An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index

Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-06, Vol.301 (2), p.1333-1367
Hauptverfasser: Hochs, Peter, Wang, Bai-Ling, Wang, Hang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1367
container_issue 2
container_start_page 1333
container_title Mathematische Zeitschrift
container_volume 301
creator Hochs, Peter
Wang, Bai-Ling
Wang, Hang
description Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced group C ∗ -algebra C r ∗ G of G . This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index index g ( D ) was defined for an element g ∈ G , in terms of a parametrix of D and a trace associated to g . An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions, τ g ( index G ( D ) ) = index g ( D ) , for a trace τ g defined by the orbital integral over the conjugacy class of g . This implies that the index theorem from part I yields information about the K -theoretic index index G ( D ) . It also shows that index g ( D ) is a homotopy-invariant quantity.
doi_str_mv 10.1007/s00209-021-02942-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660383930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660383930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4GnBc3SS7Ca73krxT7GgoJ5DNpvYFLvbJqnYm-_gG_okZl3Bm4dhBr7vmxl-CJ0SOCcA4iIAUKgwUJKqyimGPTQiOaOYlJTto1HSC1yUIj9ERyEsAZIo8hGqJ21mNlv3prxTbcwm0e3U4uvj80HFrnFpeHTti_GZaxvznsWF6bxZZbbz2dp36yQoHV3Xhmw2u-zl7A4Ppuj0EDpGB1a9BnPy28fo-frqaXqL5_c3s-lkjjXjLOKKUCW0aIALVuqKktoWoLlSLG84JyUQQ4umrGhlaltSy0sQpLHEaq7rRlA2RmfD3vTYZmtClMtu69t0UlLOgZWsYpBcdHBp34XgjZVr71bK7yQB2bOUA0uZWMoflrIPsSEUkrnH8bf6n9Q3Xwh4rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660383930</pqid></control><display><type>article</type><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</creator><creatorcontrib>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</creatorcontrib><description>Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced group C ∗ -algebra C r ∗ G of G . This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index index g ( D ) was defined for an element g ∈ G , in terms of a parametrix of D and a trace associated to g . An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions, τ g ( index G ( D ) ) = index g ( D ) , for a trace τ g defined by the orbital integral over the conjugacy class of g . This implies that the index theorem from part I yields information about the K -theoretic index index G ( D ) . It also shows that index g ( D ) is a homotopy-invariant quantity.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-021-02942-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Riemann manifold ; Theorems</subject><ispartof>Mathematische Zeitschrift, 2022-06, Vol.301 (2), p.1333-1367</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</citedby><cites>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-021-02942-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-021-02942-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hochs, Peter</creatorcontrib><creatorcontrib>Wang, Bai-Ling</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced group C ∗ -algebra C r ∗ G of G . This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index index g ( D ) was defined for an element g ∈ G , in terms of a parametrix of D and a trace associated to g . An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions, τ g ( index G ( D ) ) = index g ( D ) , for a trace τ g defined by the orbital integral over the conjugacy class of g . This implies that the index theorem from part I yields information about the K -theoretic index index G ( D ) . It also shows that index g ( D ) is a homotopy-invariant quantity.</description><subject>Boundary conditions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Riemann manifold</subject><subject>Theorems</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM9KAzEQxoMoWKsv4GnBc3SS7Ca73krxT7GgoJ5DNpvYFLvbJqnYm-_gG_okZl3Bm4dhBr7vmxl-CJ0SOCcA4iIAUKgwUJKqyimGPTQiOaOYlJTto1HSC1yUIj9ERyEsAZIo8hGqJ21mNlv3prxTbcwm0e3U4uvj80HFrnFpeHTti_GZaxvznsWF6bxZZbbz2dp36yQoHV3Xhmw2u-zl7A4Ppuj0EDpGB1a9BnPy28fo-frqaXqL5_c3s-lkjjXjLOKKUCW0aIALVuqKktoWoLlSLG84JyUQQ4umrGhlaltSy0sQpLHEaq7rRlA2RmfD3vTYZmtClMtu69t0UlLOgZWsYpBcdHBp34XgjZVr71bK7yQB2bOUA0uZWMoflrIPsSEUkrnH8bf6n9Q3Xwh4rw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hochs, Peter</creator><creator>Wang, Bai-Ling</creator><creator>Wang, Hang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><author>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Riemann manifold</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochs, Peter</creatorcontrib><creatorcontrib>Wang, Bai-Ling</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochs, Peter</au><au>Wang, Bai-Ling</au><au>Wang, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>301</volume><issue>2</issue><spage>1333</spage><epage>1367</epage><pages>1333-1367</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced group C ∗ -algebra C r ∗ G of G . This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index index g ( D ) was defined for an element g ∈ G , in terms of a parametrix of D and a trace associated to g . An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions, τ g ( index G ( D ) ) = index g ( D ) , for a trace τ g defined by the orbital integral over the conjugacy class of g . This implies that the index theorem from part I yields information about the K -theoretic index index G ( D ) . It also shows that index g ( D ) is a homotopy-invariant quantity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-021-02942-0</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2022-06, Vol.301 (2), p.1333-1367
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2660383930
source SpringerLink Journals - AutoHoldings
subjects Boundary conditions
Mathematics
Mathematics and Statistics
Operators (mathematics)
Riemann manifold
Theorems
title An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equivariant%20Atiyah%E2%80%93Patodi%E2%80%93Singer%20index%20theorem%20for%20proper%20actions%20II:%20the%20K-theoretic%20index&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Hochs,%20Peter&rft.date=2022-06-01&rft.volume=301&rft.issue=2&rft.spage=1333&rft.epage=1367&rft.pages=1333-1367&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-021-02942-0&rft_dat=%3Cproquest_cross%3E2660383930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660383930&rft_id=info:pmid/&rfr_iscdi=true