An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index
Consider a proper, isometric action by a unimodular locally compact group G on a Riemannian manifold M with boundary, such that M / G is compact. Then an equivariant Dirac-type operator D on M under a suitable boundary condition has an equivariant index index G ( D ) in the K -theory of the reduced...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-06, Vol.301 (2), p.1333-1367 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1367 |
---|---|
container_issue | 2 |
container_start_page | 1333 |
container_title | Mathematische Zeitschrift |
container_volume | 301 |
creator | Hochs, Peter Wang, Bai-Ling Wang, Hang |
description | Consider a proper, isometric action by a unimodular locally compact group
G
on a Riemannian manifold
M
with boundary, such that
M
/
G
is compact. Then an equivariant Dirac-type operator
D
on
M
under a suitable boundary condition has an equivariant index
index
G
(
D
)
in the
K
-theory of the reduced group
C
∗
-algebra
C
r
∗
G
of
G
. This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index
index
g
(
D
)
was defined for an element
g
∈
G
, in terms of a parametrix of
D
and a trace associated to
g
. An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions,
τ
g
(
index
G
(
D
)
)
=
index
g
(
D
)
,
for a trace
τ
g
defined by the orbital integral over the conjugacy class of
g
. This implies that the index theorem from part I yields information about the
K
-theoretic index
index
G
(
D
)
. It also shows that
index
g
(
D
)
is a homotopy-invariant quantity. |
doi_str_mv | 10.1007/s00209-021-02942-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660383930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660383930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsv4GnBc3SS7Ca73krxT7GgoJ5DNpvYFLvbJqnYm-_gG_okZl3Bm4dhBr7vmxl-CJ0SOCcA4iIAUKgwUJKqyimGPTQiOaOYlJTto1HSC1yUIj9ERyEsAZIo8hGqJ21mNlv3prxTbcwm0e3U4uvj80HFrnFpeHTti_GZaxvznsWF6bxZZbbz2dp36yQoHV3Xhmw2u-zl7A4Ppuj0EDpGB1a9BnPy28fo-frqaXqL5_c3s-lkjjXjLOKKUCW0aIALVuqKktoWoLlSLG84JyUQQ4umrGhlaltSy0sQpLHEaq7rRlA2RmfD3vTYZmtClMtu69t0UlLOgZWsYpBcdHBp34XgjZVr71bK7yQB2bOUA0uZWMoflrIPsSEUkrnH8bf6n9Q3Xwh4rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660383930</pqid></control><display><type>article</type><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</creator><creatorcontrib>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</creatorcontrib><description>Consider a proper, isometric action by a unimodular locally compact group
G
on a Riemannian manifold
M
with boundary, such that
M
/
G
is compact. Then an equivariant Dirac-type operator
D
on
M
under a suitable boundary condition has an equivariant index
index
G
(
D
)
in the
K
-theory of the reduced group
C
∗
-algebra
C
r
∗
G
of
G
. This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index
index
g
(
D
)
was defined for an element
g
∈
G
, in terms of a parametrix of
D
and a trace associated to
g
. An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions,
τ
g
(
index
G
(
D
)
)
=
index
g
(
D
)
,
for a trace
τ
g
defined by the orbital integral over the conjugacy class of
g
. This implies that the index theorem from part I yields information about the
K
-theoretic index
index
G
(
D
)
. It also shows that
index
g
(
D
)
is a homotopy-invariant quantity.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-021-02942-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Riemann manifold ; Theorems</subject><ispartof>Mathematische Zeitschrift, 2022-06, Vol.301 (2), p.1333-1367</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</citedby><cites>FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-021-02942-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-021-02942-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hochs, Peter</creatorcontrib><creatorcontrib>Wang, Bai-Ling</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Consider a proper, isometric action by a unimodular locally compact group
G
on a Riemannian manifold
M
with boundary, such that
M
/
G
is compact. Then an equivariant Dirac-type operator
D
on
M
under a suitable boundary condition has an equivariant index
index
G
(
D
)
in the
K
-theory of the reduced group
C
∗
-algebra
C
r
∗
G
of
G
. This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index
index
g
(
D
)
was defined for an element
g
∈
G
, in terms of a parametrix of
D
and a trace associated to
g
. An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions,
τ
g
(
index
G
(
D
)
)
=
index
g
(
D
)
,
for a trace
τ
g
defined by the orbital integral over the conjugacy class of
g
. This implies that the index theorem from part I yields information about the
K
-theoretic index
index
G
(
D
)
. It also shows that
index
g
(
D
)
is a homotopy-invariant quantity.</description><subject>Boundary conditions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Riemann manifold</subject><subject>Theorems</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM9KAzEQxoMoWKsv4GnBc3SS7Ca73krxT7GgoJ5DNpvYFLvbJqnYm-_gG_okZl3Bm4dhBr7vmxl-CJ0SOCcA4iIAUKgwUJKqyimGPTQiOaOYlJTto1HSC1yUIj9ERyEsAZIo8hGqJ21mNlv3prxTbcwm0e3U4uvj80HFrnFpeHTti_GZaxvznsWF6bxZZbbz2dp36yQoHV3Xhmw2u-zl7A4Ppuj0EDpGB1a9BnPy28fo-frqaXqL5_c3s-lkjjXjLOKKUCW0aIALVuqKktoWoLlSLG84JyUQQ4umrGhlaltSy0sQpLHEaq7rRlA2RmfD3vTYZmtClMtu69t0UlLOgZWsYpBcdHBp34XgjZVr71bK7yQB2bOUA0uZWMoflrIPsSEUkrnH8bf6n9Q3Xwh4rw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hochs, Peter</creator><creator>Wang, Bai-Ling</creator><creator>Wang, Hang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</title><author>Hochs, Peter ; Wang, Bai-Ling ; Wang, Hang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-912a7c7d06738c921bf50c6aa34d661801e25d8929ebf82f68071df1fc6cbd723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Riemann manifold</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hochs, Peter</creatorcontrib><creatorcontrib>Wang, Bai-Ling</creatorcontrib><creatorcontrib>Wang, Hang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hochs, Peter</au><au>Wang, Bai-Ling</au><au>Wang, Hang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>301</volume><issue>2</issue><spage>1333</spage><epage>1367</epage><pages>1333-1367</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Consider a proper, isometric action by a unimodular locally compact group
G
on a Riemannian manifold
M
with boundary, such that
M
/
G
is compact. Then an equivariant Dirac-type operator
D
on
M
under a suitable boundary condition has an equivariant index
index
G
(
D
)
in the
K
-theory of the reduced group
C
∗
-algebra
C
r
∗
G
of
G
. This is a common generalisation of the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index. In part I of this series, a numerical index
index
g
(
D
)
was defined for an element
g
∈
G
, in terms of a parametrix of
D
and a trace associated to
g
. An Atiyah–Patodi–Singer type index formula was obtained for this index. In this paper, we show that, under certain conditions,
τ
g
(
index
G
(
D
)
)
=
index
g
(
D
)
,
for a trace
τ
g
defined by the orbital integral over the conjugacy class of
g
. This implies that the index theorem from part I yields information about the
K
-theoretic index
index
G
(
D
)
. It also shows that
index
g
(
D
)
is a homotopy-invariant quantity.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-021-02942-0</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2022-06, Vol.301 (2), p.1333-1367 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2660383930 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary conditions Mathematics Mathematics and Statistics Operators (mathematics) Riemann manifold Theorems |
title | An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equivariant%20Atiyah%E2%80%93Patodi%E2%80%93Singer%20index%20theorem%20for%20proper%20actions%20II:%20the%20K-theoretic%20index&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Hochs,%20Peter&rft.date=2022-06-01&rft.volume=301&rft.issue=2&rft.spage=1333&rft.epage=1367&rft.pages=1333-1367&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-021-02942-0&rft_dat=%3Cproquest_cross%3E2660383930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660383930&rft_id=info:pmid/&rfr_iscdi=true |