Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks

The mechanical behavior of low porosity carbonate rocks is investigated by a series of conventional triaxial compression tests performed at room temperature, at various confining pressures up to 70 MPa and at a constant strain rate of 5 × 10 −5  s −1 . Aiming at an improvement of the accuracy and qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotechnical and geological engineering 2022-04, Vol.40 (4), p.1833-1849
Hauptverfasser: Tsikrikis, Anastasios, Papaliangas, Theodosios, Marinos, Vassilis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 4
container_start_page 1833
container_title Geotechnical and geological engineering
container_volume 40
creator Tsikrikis, Anastasios
Papaliangas, Theodosios
Marinos, Vassilis
description The mechanical behavior of low porosity carbonate rocks is investigated by a series of conventional triaxial compression tests performed at room temperature, at various confining pressures up to 70 MPa and at a constant strain rate of 5 × 10 −5  s −1 . Aiming at an improvement of the accuracy and quality of the constant m i of the non-linear Hoek–Brown criterion for jointed rock, four dense, high strength and low-porosity carbonate rocks were tested in conventional triaxial testing, under confining pressures over the entire brittle field, from σ 3  = 0 to the brittle-ductile transition. Intact, fresh and dry specimens from limestones and two marbles were tested using a standard NX Hoek triaxial cell . The results indicate that the average brittle-ductile transition pressure and the value of m i determined by the experimental data over the entire brittle field, were approximately twice as high for limestones as for marbles. With the inclusion of the results from five well-known carbonate rocks published by other researchers, it was found that, for the total number of nine carbonate rocks , the ratio of the critical principal stress ratio at the transition (σ 1 /σ 3 ) was equal to 5.84 irrespective of rock type, transition pressure, grain size, and m i value. Moreover, the transition pressure decreases logarithmically with the average rock grain size and the ratio of the transition pressure to the unconfined compressive strength σ ci .
doi_str_mv 10.1007/s10706-021-01995-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660203500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660203500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-8d9dc52ffd4dd6249d8b072dc54fc773e25f503e58ec655464908f486e9419963</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKsv4CngOTr53N2jXT8qFBSpeAzb3US2H0lNUkpvvoNv6JO4dQVvngaG3_xn5ofQOYVLCpBdRQoZKAKMEqBFIYk6QAMqM06oZMUhGkChgHCas2N0EuMcAJgCOkCvo9CmtDTkZlOndmnwNFQutqn1DleuwWNvFl8fn6Pgtw6vWlx6F1PlEvYWT_yWPPngO3yHyyrMvKuSwc--XsRTdGSrZTRnv3WIXu5up-WYTB7vH8rrCakZF4rkTdHUklnbiKZRTBRNPoOMdT1h6yzjhkkrgRuZm1pJKZQoILciV6YQ3Z-KD9FFn7sO_n1jYtJzvwmuW6mZUsCAS4COYj1Vd9fGYKxeh3ZVhZ2moPcCdS9QdwL1j0C9j-b9UOxg92bCX_Q_U98Jj3Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660203500</pqid></control><display><type>article</type><title>Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks</title><source>Springer Nature - Complete Springer Journals</source><creator>Tsikrikis, Anastasios ; Papaliangas, Theodosios ; Marinos, Vassilis</creator><creatorcontrib>Tsikrikis, Anastasios ; Papaliangas, Theodosios ; Marinos, Vassilis</creatorcontrib><description>The mechanical behavior of low porosity carbonate rocks is investigated by a series of conventional triaxial compression tests performed at room temperature, at various confining pressures up to 70 MPa and at a constant strain rate of 5 × 10 −5  s −1 . Aiming at an improvement of the accuracy and quality of the constant m i of the non-linear Hoek–Brown criterion for jointed rock, four dense, high strength and low-porosity carbonate rocks were tested in conventional triaxial testing, under confining pressures over the entire brittle field, from σ 3  = 0 to the brittle-ductile transition. Intact, fresh and dry specimens from limestones and two marbles were tested using a standard NX Hoek triaxial cell . The results indicate that the average brittle-ductile transition pressure and the value of m i determined by the experimental data over the entire brittle field, were approximately twice as high for limestones as for marbles. With the inclusion of the results from five well-known carbonate rocks published by other researchers, it was found that, for the total number of nine carbonate rocks , the ratio of the critical principal stress ratio at the transition (σ 1 /σ 3 ) was equal to 5.84 irrespective of rock type, transition pressure, grain size, and m i value. Moreover, the transition pressure decreases logarithmically with the average rock grain size and the ratio of the transition pressure to the unconfined compressive strength σ ci .</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-021-01995-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Brittleness ; Carbonate rocks ; Carbonates ; Civil Engineering ; Compression ; Compression tests ; Compressive strength ; Confining ; Ductile-brittle transition ; Earth and Environmental Science ; Earth Sciences ; Geotechnical Engineering &amp; Applied Earth Sciences ; Grain size ; Hydrogeology ; Jointed rock ; Mechanical properties ; Original Paper ; Particle size ; Porosity ; Pressure ; Room temperature ; Strain rate ; Stress ratio ; Terrestrial Pollution ; Transition pressure ; Triaxial compression tests ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2022-04, Vol.40 (4), p.1833-1849</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-8d9dc52ffd4dd6249d8b072dc54fc773e25f503e58ec655464908f486e9419963</citedby><cites>FETCH-LOGICAL-c2346-8d9dc52ffd4dd6249d8b072dc54fc773e25f503e58ec655464908f486e9419963</cites><orcidid>0000-0002-9864-7878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-021-01995-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-021-01995-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Tsikrikis, Anastasios</creatorcontrib><creatorcontrib>Papaliangas, Theodosios</creatorcontrib><creatorcontrib>Marinos, Vassilis</creatorcontrib><title>Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>The mechanical behavior of low porosity carbonate rocks is investigated by a series of conventional triaxial compression tests performed at room temperature, at various confining pressures up to 70 MPa and at a constant strain rate of 5 × 10 −5  s −1 . Aiming at an improvement of the accuracy and quality of the constant m i of the non-linear Hoek–Brown criterion for jointed rock, four dense, high strength and low-porosity carbonate rocks were tested in conventional triaxial testing, under confining pressures over the entire brittle field, from σ 3  = 0 to the brittle-ductile transition. Intact, fresh and dry specimens from limestones and two marbles were tested using a standard NX Hoek triaxial cell . The results indicate that the average brittle-ductile transition pressure and the value of m i determined by the experimental data over the entire brittle field, were approximately twice as high for limestones as for marbles. With the inclusion of the results from five well-known carbonate rocks published by other researchers, it was found that, for the total number of nine carbonate rocks , the ratio of the critical principal stress ratio at the transition (σ 1 /σ 3 ) was equal to 5.84 irrespective of rock type, transition pressure, grain size, and m i value. Moreover, the transition pressure decreases logarithmically with the average rock grain size and the ratio of the transition pressure to the unconfined compressive strength σ ci .</description><subject>Brittleness</subject><subject>Carbonate rocks</subject><subject>Carbonates</subject><subject>Civil Engineering</subject><subject>Compression</subject><subject>Compression tests</subject><subject>Compressive strength</subject><subject>Confining</subject><subject>Ductile-brittle transition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Grain size</subject><subject>Hydrogeology</subject><subject>Jointed rock</subject><subject>Mechanical properties</subject><subject>Original Paper</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Room temperature</subject><subject>Strain rate</subject><subject>Stress ratio</subject><subject>Terrestrial Pollution</subject><subject>Transition pressure</subject><subject>Triaxial compression tests</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEQx4MoWKsv4CngOTr53N2jXT8qFBSpeAzb3US2H0lNUkpvvoNv6JO4dQVvngaG3_xn5ofQOYVLCpBdRQoZKAKMEqBFIYk6QAMqM06oZMUhGkChgHCas2N0EuMcAJgCOkCvo9CmtDTkZlOndmnwNFQutqn1DleuwWNvFl8fn6Pgtw6vWlx6F1PlEvYWT_yWPPngO3yHyyrMvKuSwc--XsRTdGSrZTRnv3WIXu5up-WYTB7vH8rrCakZF4rkTdHUklnbiKZRTBRNPoOMdT1h6yzjhkkrgRuZm1pJKZQoILciV6YQ3Z-KD9FFn7sO_n1jYtJzvwmuW6mZUsCAS4COYj1Vd9fGYKxeh3ZVhZ2moPcCdS9QdwL1j0C9j-b9UOxg92bCX_Q_U98Jj3Ng</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Tsikrikis, Anastasios</creator><creator>Papaliangas, Theodosios</creator><creator>Marinos, Vassilis</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9864-7878</orcidid></search><sort><creationdate>20220401</creationdate><title>Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks</title><author>Tsikrikis, Anastasios ; Papaliangas, Theodosios ; Marinos, Vassilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-8d9dc52ffd4dd6249d8b072dc54fc773e25f503e58ec655464908f486e9419963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brittleness</topic><topic>Carbonate rocks</topic><topic>Carbonates</topic><topic>Civil Engineering</topic><topic>Compression</topic><topic>Compression tests</topic><topic>Compressive strength</topic><topic>Confining</topic><topic>Ductile-brittle transition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Grain size</topic><topic>Hydrogeology</topic><topic>Jointed rock</topic><topic>Mechanical properties</topic><topic>Original Paper</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Room temperature</topic><topic>Strain rate</topic><topic>Stress ratio</topic><topic>Terrestrial Pollution</topic><topic>Transition pressure</topic><topic>Triaxial compression tests</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsikrikis, Anastasios</creatorcontrib><creatorcontrib>Papaliangas, Theodosios</creatorcontrib><creatorcontrib>Marinos, Vassilis</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsikrikis, Anastasios</au><au>Papaliangas, Theodosios</au><au>Marinos, Vassilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>40</volume><issue>4</issue><spage>1833</spage><epage>1849</epage><pages>1833-1849</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>The mechanical behavior of low porosity carbonate rocks is investigated by a series of conventional triaxial compression tests performed at room temperature, at various confining pressures up to 70 MPa and at a constant strain rate of 5 × 10 −5  s −1 . Aiming at an improvement of the accuracy and quality of the constant m i of the non-linear Hoek–Brown criterion for jointed rock, four dense, high strength and low-porosity carbonate rocks were tested in conventional triaxial testing, under confining pressures over the entire brittle field, from σ 3  = 0 to the brittle-ductile transition. Intact, fresh and dry specimens from limestones and two marbles were tested using a standard NX Hoek triaxial cell . The results indicate that the average brittle-ductile transition pressure and the value of m i determined by the experimental data over the entire brittle field, were approximately twice as high for limestones as for marbles. With the inclusion of the results from five well-known carbonate rocks published by other researchers, it was found that, for the total number of nine carbonate rocks , the ratio of the critical principal stress ratio at the transition (σ 1 /σ 3 ) was equal to 5.84 irrespective of rock type, transition pressure, grain size, and m i value. Moreover, the transition pressure decreases logarithmically with the average rock grain size and the ratio of the transition pressure to the unconfined compressive strength σ ci .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10706-021-01995-6</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9864-7878</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3182
ispartof Geotechnical and geological engineering, 2022-04, Vol.40 (4), p.1833-1849
issn 0960-3182
1573-1529
language eng
recordid cdi_proquest_journals_2660203500
source Springer Nature - Complete Springer Journals
subjects Brittleness
Carbonate rocks
Carbonates
Civil Engineering
Compression
Compression tests
Compressive strength
Confining
Ductile-brittle transition
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
Grain size
Hydrogeology
Jointed rock
Mechanical properties
Original Paper
Particle size
Porosity
Pressure
Room temperature
Strain rate
Stress ratio
Terrestrial Pollution
Transition pressure
Triaxial compression tests
Waste Management/Waste Technology
title Brittle-Ductile Transition and Hoek–Brown mi Constant of Low-Porosity Carbonate Rocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brittle-Ductile%20Transition%20and%20Hoek%E2%80%93Brown%20mi%20Constant%20of%20Low-Porosity%20Carbonate%20Rocks&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Tsikrikis,%20Anastasios&rft.date=2022-04-01&rft.volume=40&rft.issue=4&rft.spage=1833&rft.epage=1849&rft.pages=1833-1849&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-021-01995-6&rft_dat=%3Cproquest_cross%3E2660203500%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660203500&rft_id=info:pmid/&rfr_iscdi=true