Personalized saliency prediction using color spaces
Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, cultu...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-05, Vol.81 (13), p.18181-18202 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18202 |
---|---|
container_issue | 13 |
container_start_page | 18181 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Zaib, Sumaira Erum Yamamura, Masayuki |
description | Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others. |
doi_str_mv | 10.1007/s11042-022-12341-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660203426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660203426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOPsdORlQBRaoEA8yW4zhVqhAHXzqUX09KkNiY3g3fezp9jF0LuBUA5o6EACU5SMmFRCU4nLCFyA1yY6Q4nW4sgJscxDm7INoBCJ1LtWD4GhLF3nXtV6gzmjL0_pANKdStH9vYZ3tq-23mYxdTRoPzgS7ZWeM6Cle_uWTvjw9vqzXfvDw9r-433KNQI0cPhctFVWBZmlI5VxqotHShNmVVOw2Y19hoqUJoQGEowEmHoMrKOQUecMlu5t0hxc99oNHu4j5Nv5KVWoMEVFJPlJwpnyJRCo0dUvvh0sEKsEc5dpZjJzn2R449TuNcognutyH9Tf_T-gazRGZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660203426</pqid></control><display><type>article</type><title>Personalized saliency prediction using color spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zaib, Sumaira Erum ; Yamamura, Masayuki</creator><creatorcontrib>Zaib, Sumaira Erum ; Yamamura, Masayuki</creatorcontrib><description>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12341-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bias ; Brain research ; Computer Communication Networks ; Computer Science ; Customization ; Data Structures and Information Theory ; Gender ; Image compression ; Multimedia ; Multimedia Information Systems ; Personal information ; Regression models ; Salience ; Saturation (color) ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-05, Vol.81 (13), p.18181-18202</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</cites><orcidid>0000-0002-8019-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12341-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12341-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zaib, Sumaira Erum</creatorcontrib><creatorcontrib>Yamamura, Masayuki</creatorcontrib><title>Personalized saliency prediction using color spaces</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</description><subject>Bias</subject><subject>Brain research</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Customization</subject><subject>Data Structures and Information Theory</subject><subject>Gender</subject><subject>Image compression</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Personal information</subject><subject>Regression models</subject><subject>Salience</subject><subject>Saturation (color)</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOPsdORlQBRaoEA8yW4zhVqhAHXzqUX09KkNiY3g3fezp9jF0LuBUA5o6EACU5SMmFRCU4nLCFyA1yY6Q4nW4sgJscxDm7INoBCJ1LtWD4GhLF3nXtV6gzmjL0_pANKdStH9vYZ3tq-23mYxdTRoPzgS7ZWeM6Cle_uWTvjw9vqzXfvDw9r-433KNQI0cPhctFVWBZmlI5VxqotHShNmVVOw2Y19hoqUJoQGEowEmHoMrKOQUecMlu5t0hxc99oNHu4j5Nv5KVWoMEVFJPlJwpnyJRCo0dUvvh0sEKsEc5dpZjJzn2R449TuNcognutyH9Tf_T-gazRGZB</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zaib, Sumaira Erum</creator><creator>Yamamura, Masayuki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8019-7434</orcidid></search><sort><creationdate>20220501</creationdate><title>Personalized saliency prediction using color spaces</title><author>Zaib, Sumaira Erum ; Yamamura, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Brain research</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Customization</topic><topic>Data Structures and Information Theory</topic><topic>Gender</topic><topic>Image compression</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Personal information</topic><topic>Regression models</topic><topic>Salience</topic><topic>Saturation (color)</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaib, Sumaira Erum</creatorcontrib><creatorcontrib>Yamamura, Masayuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaib, Sumaira Erum</au><au>Yamamura, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized saliency prediction using color spaces</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>81</volume><issue>13</issue><spage>18181</spage><epage>18202</epage><pages>18181-18202</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12341-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8019-7434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-05, Vol.81 (13), p.18181-18202 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2660203426 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bias Brain research Computer Communication Networks Computer Science Customization Data Structures and Information Theory Gender Image compression Multimedia Multimedia Information Systems Personal information Regression models Salience Saturation (color) Special Purpose and Application-Based Systems |
title | Personalized saliency prediction using color spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20saliency%20prediction%20using%20color%20spaces&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zaib,%20Sumaira%20Erum&rft.date=2022-05-01&rft.volume=81&rft.issue=13&rft.spage=18181&rft.epage=18202&rft.pages=18181-18202&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12341-0&rft_dat=%3Cproquest_cross%3E2660203426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660203426&rft_id=info:pmid/&rfr_iscdi=true |