Personalized saliency prediction using color spaces

Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, cultu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-05, Vol.81 (13), p.18181-18202
Hauptverfasser: Zaib, Sumaira Erum, Yamamura, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18202
container_issue 13
container_start_page 18181
container_title Multimedia tools and applications
container_volume 81
creator Zaib, Sumaira Erum
Yamamura, Masayuki
description Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.
doi_str_mv 10.1007/s11042-022-12341-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660203426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660203426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOPsdORlQBRaoEA8yW4zhVqhAHXzqUX09KkNiY3g3fezp9jF0LuBUA5o6EACU5SMmFRCU4nLCFyA1yY6Q4nW4sgJscxDm7INoBCJ1LtWD4GhLF3nXtV6gzmjL0_pANKdStH9vYZ3tq-23mYxdTRoPzgS7ZWeM6Cle_uWTvjw9vqzXfvDw9r-433KNQI0cPhctFVWBZmlI5VxqotHShNmVVOw2Y19hoqUJoQGEowEmHoMrKOQUecMlu5t0hxc99oNHu4j5Nv5KVWoMEVFJPlJwpnyJRCo0dUvvh0sEKsEc5dpZjJzn2R449TuNcognutyH9Tf_T-gazRGZB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660203426</pqid></control><display><type>article</type><title>Personalized saliency prediction using color spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zaib, Sumaira Erum ; Yamamura, Masayuki</creator><creatorcontrib>Zaib, Sumaira Erum ; Yamamura, Masayuki</creatorcontrib><description>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-022-12341-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bias ; Brain research ; Computer Communication Networks ; Computer Science ; Customization ; Data Structures and Information Theory ; Gender ; Image compression ; Multimedia ; Multimedia Information Systems ; Personal information ; Regression models ; Salience ; Saturation (color) ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-05, Vol.81 (13), p.18181-18202</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</cites><orcidid>0000-0002-8019-7434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-022-12341-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-022-12341-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zaib, Sumaira Erum</creatorcontrib><creatorcontrib>Yamamura, Masayuki</creatorcontrib><title>Personalized saliency prediction using color spaces</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</description><subject>Bias</subject><subject>Brain research</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Customization</subject><subject>Data Structures and Information Theory</subject><subject>Gender</subject><subject>Image compression</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Personal information</subject><subject>Regression models</subject><subject>Salience</subject><subject>Saturation (color)</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvOPsdORlQBRaoEA8yW4zhVqhAHXzqUX09KkNiY3g3fezp9jF0LuBUA5o6EACU5SMmFRCU4nLCFyA1yY6Q4nW4sgJscxDm7INoBCJ1LtWD4GhLF3nXtV6gzmjL0_pANKdStH9vYZ3tq-23mYxdTRoPzgS7ZWeM6Cle_uWTvjw9vqzXfvDw9r-433KNQI0cPhctFVWBZmlI5VxqotHShNmVVOw2Y19hoqUJoQGEowEmHoMrKOQUecMlu5t0hxc99oNHu4j5Nv5KVWoMEVFJPlJwpnyJRCo0dUvvh0sEKsEc5dpZjJzn2R449TuNcognutyH9Tf_T-gazRGZB</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zaib, Sumaira Erum</creator><creator>Yamamura, Masayuki</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8019-7434</orcidid></search><sort><creationdate>20220501</creationdate><title>Personalized saliency prediction using color spaces</title><author>Zaib, Sumaira Erum ; Yamamura, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-3c08a51b8399794aa970b62aed79bda6035d3f624eef043e80a2a3049baa40c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bias</topic><topic>Brain research</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Customization</topic><topic>Data Structures and Information Theory</topic><topic>Gender</topic><topic>Image compression</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Personal information</topic><topic>Regression models</topic><topic>Salience</topic><topic>Saturation (color)</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaib, Sumaira Erum</creatorcontrib><creatorcontrib>Yamamura, Masayuki</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaib, Sumaira Erum</au><au>Yamamura, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized saliency prediction using color spaces</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>81</volume><issue>13</issue><spage>18181</spage><epage>18202</epage><pages>18181-18202</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Saliency is the ability of being important, noticeable or attention worthy. Finding salient regions in images has important applications in automatic image cropping, image compression and advertisements. The salient regions for an individual in an image changes according to their gender, race, culture, likes, dislikes and experiences. Universal Saliency Maps point out the overall general salient regions without any considerations of personal traits of the subject. Therefore, personalized saliency maps are required for better and more personalized predictions of salient regions. In this study, using the RGB (Red, Green, Blue), CYMK (Cyan, Yellow, Magenta, Key), HSV (Hue, Saturation, Value) and HSL (Hue, Saturation, Lightness) fixation patterns of individuals, we propose a Gradient Boosted Tree Regression model to extract personalized saliency map from the universal saliency map with an average accuracy of 80% (Area Under Curve Judd Metrics). We also put forth our discussion for why some images and subjects have better saliency map predictions than others.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-022-12341-0</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8019-7434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-05, Vol.81 (13), p.18181-18202
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2660203426
source SpringerLink Journals - AutoHoldings
subjects Bias
Brain research
Computer Communication Networks
Computer Science
Customization
Data Structures and Information Theory
Gender
Image compression
Multimedia
Multimedia Information Systems
Personal information
Regression models
Salience
Saturation (color)
Special Purpose and Application-Based Systems
title Personalized saliency prediction using color spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A17%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20saliency%20prediction%20using%20color%20spaces&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zaib,%20Sumaira%20Erum&rft.date=2022-05-01&rft.volume=81&rft.issue=13&rft.spage=18181&rft.epage=18202&rft.pages=18181-18202&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-022-12341-0&rft_dat=%3Cproquest_cross%3E2660203426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660203426&rft_id=info:pmid/&rfr_iscdi=true