A Dataset for N-ary Relation Extraction of Drug Combinations

Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Tiktinsky, Aryeh, Viswanathan, Vijay, Niezni, Danna, Dana Meron Azagury, Shamay, Yosi, Taub-Tabib, Hillel, Hope, Tom, Goldberg, Yoav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tiktinsky, Aryeh
Viswanathan, Vijay
Niezni, Danna
Dana Meron Azagury
Shamay, Yosi
Taub-Tabib, Hillel
Hope, Tom
Goldberg, Yoav
description Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191806</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601918063</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcVRwSSxJLE4tUUjLL1Lw000sqlQISs1JLMnMz1NwrSgpSkwGM_PTFFyKStMVnPNzkzLzwNLFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RmZmBoaWhhYGZMnCoAzK820A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191806</pqid></control><display><type>article</type><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</creator><creatorcontrib>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</creatorcontrib><description>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Community participation ; Datasets ; Malaria ; Tuberculosis</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tiktinsky, Aryeh</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Niezni, Danna</creatorcontrib><creatorcontrib>Dana Meron Azagury</creatorcontrib><creatorcontrib>Shamay, Yosi</creatorcontrib><creatorcontrib>Taub-Tabib, Hillel</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><title>arXiv.org</title><description>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</description><subject>Combinatorial analysis</subject><subject>Community participation</subject><subject>Datasets</subject><subject>Malaria</subject><subject>Tuberculosis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcVRwSSxJLE4tUUjLL1Lw000sqlQISs1JLMnMz1NwrSgpSkwGM_PTFFyKStMVnPNzkzLzwNLFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RmZmBoaWhhYGZMnCoAzK820A</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Tiktinsky, Aryeh</creator><creator>Viswanathan, Vijay</creator><creator>Niezni, Danna</creator><creator>Dana Meron Azagury</creator><creator>Shamay, Yosi</creator><creator>Taub-Tabib, Hillel</creator><creator>Hope, Tom</creator><creator>Goldberg, Yoav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220504</creationdate><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><author>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601918063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Community participation</topic><topic>Datasets</topic><topic>Malaria</topic><topic>Tuberculosis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiktinsky, Aryeh</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Niezni, Danna</creatorcontrib><creatorcontrib>Dana Meron Azagury</creatorcontrib><creatorcontrib>Shamay, Yosi</creatorcontrib><creatorcontrib>Taub-Tabib, Hillel</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiktinsky, Aryeh</au><au>Viswanathan, Vijay</au><au>Niezni, Danna</au><au>Dana Meron Azagury</au><au>Shamay, Yosi</au><au>Taub-Tabib, Hillel</au><au>Hope, Tom</au><au>Goldberg, Yoav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Dataset for N-ary Relation Extraction of Drug Combinations</atitle><jtitle>arXiv.org</jtitle><date>2022-05-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2660191806
source Open Access: Freely Accessible Journals by multiple vendors
subjects Combinatorial analysis
Community participation
Datasets
Malaria
Tuberculosis
title A Dataset for N-ary Relation Extraction of Drug Combinations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Dataset%20for%20N-ary%20Relation%20Extraction%20of%20Drug%20Combinations&rft.jtitle=arXiv.org&rft.au=Tiktinsky,%20Aryeh&rft.date=2022-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191806%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660191806&rft_id=info:pmid/&rfr_iscdi=true