A Dataset for N-ary Relation Extraction of Drug Combinations
Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tiktinsky, Aryeh Viswanathan, Vijay Niezni, Danna Dana Meron Azagury Shamay, Yosi Taub-Tabib, Hillel Hope, Tom Goldberg, Yoav |
description | Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191806</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601918063</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcVRwSSxJLE4tUUjLL1Lw000sqlQISs1JLMnMz1NwrSgpSkwGM_PTFFyKStMVnPNzkzLzwNLFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RmZmBoaWhhYGZMnCoAzK820A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191806</pqid></control><display><type>article</type><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</creator><creatorcontrib>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</creatorcontrib><description>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Community participation ; Datasets ; Malaria ; Tuberculosis</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tiktinsky, Aryeh</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Niezni, Danna</creatorcontrib><creatorcontrib>Dana Meron Azagury</creatorcontrib><creatorcontrib>Shamay, Yosi</creatorcontrib><creatorcontrib>Taub-Tabib, Hillel</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><title>arXiv.org</title><description>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</description><subject>Combinatorial analysis</subject><subject>Community participation</subject><subject>Datasets</subject><subject>Malaria</subject><subject>Tuberculosis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcVRwSSxJLE4tUUjLL1Lw000sqlQISs1JLMnMz1NwrSgpSkwGM_PTFFyKStMVnPNzkzLzwNLFPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2RmZmBoaWhhYGZMnCoAzK820A</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Tiktinsky, Aryeh</creator><creator>Viswanathan, Vijay</creator><creator>Niezni, Danna</creator><creator>Dana Meron Azagury</creator><creator>Shamay, Yosi</creator><creator>Taub-Tabib, Hillel</creator><creator>Hope, Tom</creator><creator>Goldberg, Yoav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220504</creationdate><title>A Dataset for N-ary Relation Extraction of Drug Combinations</title><author>Tiktinsky, Aryeh ; Viswanathan, Vijay ; Niezni, Danna ; Dana Meron Azagury ; Shamay, Yosi ; Taub-Tabib, Hillel ; Hope, Tom ; Goldberg, Yoav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601918063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Community participation</topic><topic>Datasets</topic><topic>Malaria</topic><topic>Tuberculosis</topic><toplevel>online_resources</toplevel><creatorcontrib>Tiktinsky, Aryeh</creatorcontrib><creatorcontrib>Viswanathan, Vijay</creatorcontrib><creatorcontrib>Niezni, Danna</creatorcontrib><creatorcontrib>Dana Meron Azagury</creatorcontrib><creatorcontrib>Shamay, Yosi</creatorcontrib><creatorcontrib>Taub-Tabib, Hillel</creatorcontrib><creatorcontrib>Hope, Tom</creatorcontrib><creatorcontrib>Goldberg, Yoav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiktinsky, Aryeh</au><au>Viswanathan, Vijay</au><au>Niezni, Danna</au><au>Dana Meron Azagury</au><au>Shamay, Yosi</au><au>Taub-Tabib, Hillel</au><au>Hope, Tom</au><au>Goldberg, Yoav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Dataset for N-ary Relation Extraction of Drug Combinations</atitle><jtitle>arXiv.org</jtitle><date>2022-05-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation. To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset, code, and baseline models publicly to encourage the NLP community to participate in this task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2660191806 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Combinatorial analysis Community participation Datasets Malaria Tuberculosis |
title | A Dataset for N-ary Relation Extraction of Drug Combinations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A52%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Dataset%20for%20N-ary%20Relation%20Extraction%20of%20Drug%20Combinations&rft.jtitle=arXiv.org&rft.au=Tiktinsky,%20Aryeh&rft.date=2022-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191806%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660191806&rft_id=info:pmid/&rfr_iscdi=true |