Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators
We present a design strategy for selecting the effective polarizability distribution for a metasurface aperture needed to form a desired radiation pattern. A metasurface aperture consists of an array of subwavelength metamaterial elements, each of which can be conceptualized as a radiating, polariza...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bowen, Patrick T Boyarsky, Michael Pulido-Mancera, Laura M Smith, David R Yurduseven, Okan Sazegar, Mohsen |
description | We present a design strategy for selecting the effective polarizability distribution for a metasurface aperture needed to form a desired radiation pattern. A metasurface aperture consists of an array of subwavelength metamaterial elements, each of which can be conceptualized as a radiating, polarizable dipole. An ideal polarizability distribution can be determined by using a holographic approach to first obtain the necessary aperture fields, which can then be converted to a polarizability distribution using equivalence principles. To achieve this ideal distribution, the polarizability of each element would need to have unconstrained magnitude and phase; however, for a single, passive, metamaterial resonator the magnitude and phase of the effective polarizability are inextricably linked through the properties of the Lorentzian resonance, with the range of phase values restricted to a span of at most 180 degrees. Here, we introduce a family of mappings from the ideal to the available polarizability distributions, easily visualized by plotting both polarizabilities in the complex plane. Using one of these mappings it is possible to achieve highly optimized beam patterns from a metasurface antenna, despite the inherent resonator limitations. We introduce the mapping technique and provide several specific examples, with numerical simulations used to confirm the design approach. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191757</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601917573</originalsourceid><addsrcrecordid>eNqNys8OwUAQgPGNRELwDps4N2m32nIUf-JAiLjLYMtI7dbMbESfnoMHcPoO36-luiZNk2g8MqajBsz3OI5NXpgsS7vquq0FH9igu-qdr4CwgRNWKG89RxbCUxD0jnXpSW-sAAcq4Wz1tLYkgSzrF8pNrz1ZJw2Ci2ZfLgTo7EXv4YIgnriv2iVUbAe_9tRwuTjMVlFN_hksy_HuA7nvOpo8j5NJUmRF-p_6ABj8SVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191757</pqid></control><display><type>article</type><title>Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators</title><source>Free E- Journals</source><creator>Bowen, Patrick T ; Boyarsky, Michael ; Pulido-Mancera, Laura M ; Smith, David R ; Yurduseven, Okan ; Sazegar, Mohsen</creator><creatorcontrib>Bowen, Patrick T ; Boyarsky, Michael ; Pulido-Mancera, Laura M ; Smith, David R ; Yurduseven, Okan ; Sazegar, Mohsen</creatorcontrib><description>We present a design strategy for selecting the effective polarizability distribution for a metasurface aperture needed to form a desired radiation pattern. A metasurface aperture consists of an array of subwavelength metamaterial elements, each of which can be conceptualized as a radiating, polarizable dipole. An ideal polarizability distribution can be determined by using a holographic approach to first obtain the necessary aperture fields, which can then be converted to a polarizability distribution using equivalence principles. To achieve this ideal distribution, the polarizability of each element would need to have unconstrained magnitude and phase; however, for a single, passive, metamaterial resonator the magnitude and phase of the effective polarizability are inextricably linked through the properties of the Lorentzian resonance, with the range of phase values restricted to a span of at most 180 degrees. Here, we introduce a family of mappings from the ideal to the available polarizability distributions, easily visualized by plotting both polarizabilities in the complex plane. Using one of these mappings it is possible to achieve highly optimized beam patterns from a metasurface antenna, despite the inherent resonator limitations. We introduce the mapping technique and provide several specific examples, with numerical simulations used to confirm the design approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apertures ; Dipoles ; Metamaterials ; Metasurfaces ; Radiators ; Resonators</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bowen, Patrick T</creatorcontrib><creatorcontrib>Boyarsky, Michael</creatorcontrib><creatorcontrib>Pulido-Mancera, Laura M</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><creatorcontrib>Yurduseven, Okan</creatorcontrib><creatorcontrib>Sazegar, Mohsen</creatorcontrib><title>Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators</title><title>arXiv.org</title><description>We present a design strategy for selecting the effective polarizability distribution for a metasurface aperture needed to form a desired radiation pattern. A metasurface aperture consists of an array of subwavelength metamaterial elements, each of which can be conceptualized as a radiating, polarizable dipole. An ideal polarizability distribution can be determined by using a holographic approach to first obtain the necessary aperture fields, which can then be converted to a polarizability distribution using equivalence principles. To achieve this ideal distribution, the polarizability of each element would need to have unconstrained magnitude and phase; however, for a single, passive, metamaterial resonator the magnitude and phase of the effective polarizability are inextricably linked through the properties of the Lorentzian resonance, with the range of phase values restricted to a span of at most 180 degrees. Here, we introduce a family of mappings from the ideal to the available polarizability distributions, easily visualized by plotting both polarizabilities in the complex plane. Using one of these mappings it is possible to achieve highly optimized beam patterns from a metasurface antenna, despite the inherent resonator limitations. We introduce the mapping technique and provide several specific examples, with numerical simulations used to confirm the design approach.</description><subject>Apertures</subject><subject>Dipoles</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Radiators</subject><subject>Resonators</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys8OwUAQgPGNRELwDps4N2m32nIUf-JAiLjLYMtI7dbMbESfnoMHcPoO36-luiZNk2g8MqajBsz3OI5NXpgsS7vquq0FH9igu-qdr4CwgRNWKG89RxbCUxD0jnXpSW-sAAcq4Wz1tLYkgSzrF8pNrz1ZJw2Ci2ZfLgTo7EXv4YIgnriv2iVUbAe_9tRwuTjMVlFN_hksy_HuA7nvOpo8j5NJUmRF-p_6ABj8SVQ</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Bowen, Patrick T</creator><creator>Boyarsky, Michael</creator><creator>Pulido-Mancera, Laura M</creator><creator>Smith, David R</creator><creator>Yurduseven, Okan</creator><creator>Sazegar, Mohsen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220501</creationdate><title>Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators</title><author>Bowen, Patrick T ; Boyarsky, Michael ; Pulido-Mancera, Laura M ; Smith, David R ; Yurduseven, Okan ; Sazegar, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601917573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apertures</topic><topic>Dipoles</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Radiators</topic><topic>Resonators</topic><toplevel>online_resources</toplevel><creatorcontrib>Bowen, Patrick T</creatorcontrib><creatorcontrib>Boyarsky, Michael</creatorcontrib><creatorcontrib>Pulido-Mancera, Laura M</creatorcontrib><creatorcontrib>Smith, David R</creatorcontrib><creatorcontrib>Yurduseven, Okan</creatorcontrib><creatorcontrib>Sazegar, Mohsen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowen, Patrick T</au><au>Boyarsky, Michael</au><au>Pulido-Mancera, Laura M</au><au>Smith, David R</au><au>Yurduseven, Okan</au><au>Sazegar, Mohsen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators</atitle><jtitle>arXiv.org</jtitle><date>2022-05-01</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present a design strategy for selecting the effective polarizability distribution for a metasurface aperture needed to form a desired radiation pattern. A metasurface aperture consists of an array of subwavelength metamaterial elements, each of which can be conceptualized as a radiating, polarizable dipole. An ideal polarizability distribution can be determined by using a holographic approach to first obtain the necessary aperture fields, which can then be converted to a polarizability distribution using equivalence principles. To achieve this ideal distribution, the polarizability of each element would need to have unconstrained magnitude and phase; however, for a single, passive, metamaterial resonator the magnitude and phase of the effective polarizability are inextricably linked through the properties of the Lorentzian resonance, with the range of phase values restricted to a span of at most 180 degrees. Here, we introduce a family of mappings from the ideal to the available polarizability distributions, easily visualized by plotting both polarizabilities in the complex plane. Using one of these mappings it is possible to achieve highly optimized beam patterns from a metasurface antenna, despite the inherent resonator limitations. We introduce the mapping technique and provide several specific examples, with numerical simulations used to confirm the design approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2660191757 |
source | Free E- Journals |
subjects | Apertures Dipoles Metamaterials Metasurfaces Radiators Resonators |
title | Optimizing Polarizability Distributions for Metasurface Apertures with Lorentzian-Constrained Radiators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Optimizing%20Polarizability%20Distributions%20for%20Metasurface%20Apertures%20with%20Lorentzian-Constrained%20Radiators&rft.jtitle=arXiv.org&rft.au=Bowen,%20Patrick%20T&rft.date=2022-05-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191757%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660191757&rft_id=info:pmid/&rfr_iscdi=true |