Rethinking Classifier and Adversarial Attack

Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-05
Hauptverfasser: Yang, Youhuan, Sun, Lei, Dai, Leyu, Guo, Song, Mao, Xiuqing, Wang, Xiaoqin, Xu, Bayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Youhuan
Sun, Lei
Dai, Leyu
Guo, Song
Mao, Xiuqing
Wang, Xiaoqin
Xu, Bayi
description Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the proposed decouple space method to divide the classifier into two parts: non-linear and linear. Then, this paper defines the representation vector of the original example (and its space, i.e., the representation space) and uses the iterative optimization of Absolute Classification Boundaries Initialization (ACBI) to obtain a better attack starting point. Particularly, this paper applies ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2660191553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660191553</sourcerecordid><originalsourceid>FETCH-proquest_journals_26601915533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUotycjMy87MS1dwzkksLs5My0wtUkjMS1FwTClLLSpOLMpMzFFwLClJTM7mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMzA0NLQ6AdxsSpAgCFQzGO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660191553</pqid></control><display><type>article</type><title>Rethinking Classifier and Adversarial Attack</title><source>Free E- Journals</source><creator>Yang, Youhuan ; Sun, Lei ; Dai, Leyu ; Guo, Song ; Mao, Xiuqing ; Wang, Xiaoqin ; Xu, Bayi</creator><creatorcontrib>Yang, Youhuan ; Sun, Lei ; Dai, Leyu ; Guo, Song ; Mao, Xiuqing ; Wang, Xiaoqin ; Xu, Bayi</creatorcontrib><description>Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the proposed decouple space method to divide the classifier into two parts: non-linear and linear. Then, this paper defines the representation vector of the original example (and its space, i.e., the representation space) and uses the iterative optimization of Absolute Classification Boundaries Initialization (ACBI) to obtain a better attack starting point. Particularly, this paper applies ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classifiers ; Iterative methods ; Lower bounds ; Optimization ; Representations ; Robustness</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Yang, Youhuan</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Dai, Leyu</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Mao, Xiuqing</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Xu, Bayi</creatorcontrib><title>Rethinking Classifier and Adversarial Attack</title><title>arXiv.org</title><description>Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the proposed decouple space method to divide the classifier into two parts: non-linear and linear. Then, this paper defines the representation vector of the original example (and its space, i.e., the representation space) and uses the iterative optimization of Absolute Classification Boundaries Initialization (ACBI) to obtain a better attack starting point. Particularly, this paper applies ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Iterative methods</subject><subject>Lower bounds</subject><subject>Optimization</subject><subject>Representations</subject><subject>Robustness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCUotycjMy87MS1dwzkksLs5My0wtUkjMS1FwTClLLSpOLMpMzFFwLClJTM7mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMzA0NLQ6AdxsSpAgCFQzGO</recordid><startdate>20220514</startdate><enddate>20220514</enddate><creator>Yang, Youhuan</creator><creator>Sun, Lei</creator><creator>Dai, Leyu</creator><creator>Guo, Song</creator><creator>Mao, Xiuqing</creator><creator>Wang, Xiaoqin</creator><creator>Xu, Bayi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220514</creationdate><title>Rethinking Classifier and Adversarial Attack</title><author>Yang, Youhuan ; Sun, Lei ; Dai, Leyu ; Guo, Song ; Mao, Xiuqing ; Wang, Xiaoqin ; Xu, Bayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26601915533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Iterative methods</topic><topic>Lower bounds</topic><topic>Optimization</topic><topic>Representations</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Youhuan</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Dai, Leyu</creatorcontrib><creatorcontrib>Guo, Song</creatorcontrib><creatorcontrib>Mao, Xiuqing</creatorcontrib><creatorcontrib>Wang, Xiaoqin</creatorcontrib><creatorcontrib>Xu, Bayi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Youhuan</au><au>Sun, Lei</au><au>Dai, Leyu</au><au>Guo, Song</au><au>Mao, Xiuqing</au><au>Wang, Xiaoqin</au><au>Xu, Bayi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Rethinking Classifier and Adversarial Attack</atitle><jtitle>arXiv.org</jtitle><date>2022-05-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the proposed decouple space method to divide the classifier into two parts: non-linear and linear. Then, this paper defines the representation vector of the original example (and its space, i.e., the representation space) and uses the iterative optimization of Absolute Classification Boundaries Initialization (ACBI) to obtain a better attack starting point. Particularly, this paper applies ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2660191553
source Free E- Journals
subjects Algorithms
Classifiers
Iterative methods
Lower bounds
Optimization
Representations
Robustness
title Rethinking Classifier and Adversarial Attack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Rethinking%20Classifier%20and%20Adversarial%20Attack&rft.jtitle=arXiv.org&rft.au=Yang,%20Youhuan&rft.date=2022-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2660191553%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660191553&rft_id=info:pmid/&rfr_iscdi=true