Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images
One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.46975-46985 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46985 |
---|---|
container_issue | |
container_start_page | 46975 |
container_title | IEEE access |
container_volume | 10 |
creator | Vaz, Pedro G. Gaudencio, Andreia S. Ferreira, L. F. Requicha Humeau-Heurtier, Anne Morgado, Miguel Cardoso, Joao |
description | One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to 128\,{\times }\,128 ). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging. |
doi_str_mv | 10.1109/ACCESS.2022.3171334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2660159690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765455</ieee_id><doaj_id>oai_doaj_org_article_14a4783f927b493a85d0c997022e9715</doaj_id><sourcerecordid>2660159690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</originalsourceid><addsrcrecordid>eNpVkU1u2zAQhYWiBRqkOUE2BLrqQi5_RXFpCElsQIWLOFkTFDVyaciiS8pucpMet1SUBi03Q8y89wEzL8uuCV4QgtXXZVXdbLcLiildMCIJY_xddkFJoXImWPH-n__H7CrGPU6vTC0hL7Lf95BvQgvBDTvkO7QyrTmY0KJvZgzuCT3GaXDrT8FBQA_BDLHz4YDM0KK7YJ7zGs7Qo8rnG2tPIcBg4a83CdPgcAwQozsD2iZUD_l395Qc64PZTWg3oNr_QvcQfX8anR9eJhA_ZR8600e4eq2X2ePtzUO1yuvN3bpa1rnlnI550VIli5Z01lLaFA02nHe0aTAzlFLZ2dKYUhZd0kFJuCyhE1w21FpLSiwUu8zWM7f1Zq-PwaXtn7U3Tr80fNhpE0Zne9CEmwRgnaKy4YqZUrTYKiXT4UFJIhLry8z6Yfr_UKtlraceZkWBBeNnkrSfZ-0x-J8niKPepyMPaVVNk4gIVSicVGxW2eBjDNC9YQnWU_p6Tl9P6evX9JPrenY5AHhzpDsJLgT7A3daqnY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159690</pqid></control><display><type>article</type><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</creator><creatorcontrib>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</creatorcontrib><description>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to <inline-formula> <tex-math notation="LaTeX">128\,{\times }\,128 </tex-math></inline-formula>). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3171334</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Compressive sensing ; Datasets ; Engineering Sciences ; Fourier transform ; Fourier transforms ; Hadamard ordering ; Image quality ; Image reconstruction ; Image resolution ; Imaging ; Noise levels ; Photodetectors ; Pixels ; Quality assessment ; Reconstruction algorithms ; Sampling ; Sensors ; Signal and Image processing ; Signal resolution ; Signal to noise ratio ; Simulation ; single pixel imaging</subject><ispartof>IEEE access, 2022, Vol.10, p.46975-46985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</citedby><cites>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</cites><orcidid>0000-0001-9455-1206 ; 0000-0003-3490-7789 ; 0000-0002-6289-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765455$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2095,4009,27612,27902,27903,27904,54912</link.rule.ids><backlink>$$Uhttps://univ-angers.hal.science/hal-03660534$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaz, Pedro G.</creatorcontrib><creatorcontrib>Gaudencio, Andreia S.</creatorcontrib><creatorcontrib>Ferreira, L. F. Requicha</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Morgado, Miguel</creatorcontrib><creatorcontrib>Cardoso, Joao</creatorcontrib><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to <inline-formula> <tex-math notation="LaTeX">128\,{\times }\,128 </tex-math></inline-formula>). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Compressive sensing</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Fourier transform</subject><subject>Fourier transforms</subject><subject>Hadamard ordering</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Noise levels</subject><subject>Photodetectors</subject><subject>Pixels</subject><subject>Quality assessment</subject><subject>Reconstruction algorithms</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Signal and Image processing</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>single pixel imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1u2zAQhYWiBRqkOUE2BLrqQi5_RXFpCElsQIWLOFkTFDVyaciiS8pucpMet1SUBi03Q8y89wEzL8uuCV4QgtXXZVXdbLcLiildMCIJY_xddkFJoXImWPH-n__H7CrGPU6vTC0hL7Lf95BvQgvBDTvkO7QyrTmY0KJvZgzuCT3GaXDrT8FBQA_BDLHz4YDM0KK7YJ7zGs7Qo8rnG2tPIcBg4a83CdPgcAwQozsD2iZUD_l395Qc64PZTWg3oNr_QvcQfX8anR9eJhA_ZR8600e4eq2X2ePtzUO1yuvN3bpa1rnlnI550VIli5Z01lLaFA02nHe0aTAzlFLZ2dKYUhZd0kFJuCyhE1w21FpLSiwUu8zWM7f1Zq-PwaXtn7U3Tr80fNhpE0Zne9CEmwRgnaKy4YqZUrTYKiXT4UFJIhLry8z6Yfr_UKtlraceZkWBBeNnkrSfZ-0x-J8niKPepyMPaVVNk4gIVSicVGxW2eBjDNC9YQnWU_p6Tl9P6evX9JPrenY5AHhzpDsJLgT7A3daqnY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Vaz, Pedro G.</creator><creator>Gaudencio, Andreia S.</creator><creator>Ferreira, L. F. Requicha</creator><creator>Humeau-Heurtier, Anne</creator><creator>Morgado, Miguel</creator><creator>Cardoso, Joao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9455-1206</orcidid><orcidid>https://orcid.org/0000-0003-3490-7789</orcidid><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid></search><sort><creationdate>2022</creationdate><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><author>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Compressive sensing</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Fourier transform</topic><topic>Fourier transforms</topic><topic>Hadamard ordering</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Noise levels</topic><topic>Photodetectors</topic><topic>Pixels</topic><topic>Quality assessment</topic><topic>Reconstruction algorithms</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Signal and Image processing</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>single pixel imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Pedro G.</creatorcontrib><creatorcontrib>Gaudencio, Andreia S.</creatorcontrib><creatorcontrib>Ferreira, L. F. Requicha</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Morgado, Miguel</creatorcontrib><creatorcontrib>Cardoso, Joao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Pedro G.</au><au>Gaudencio, Andreia S.</au><au>Ferreira, L. F. Requicha</au><au>Humeau-Heurtier, Anne</au><au>Morgado, Miguel</au><au>Cardoso, Joao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>46975</spage><epage>46985</epage><pages>46975-46985</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to <inline-formula> <tex-math notation="LaTeX">128\,{\times }\,128 </tex-math></inline-formula>). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3171334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9455-1206</orcidid><orcidid>https://orcid.org/0000-0003-3490-7789</orcidid><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.46975-46985 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2660159690 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Compressive sensing Datasets Engineering Sciences Fourier transform Fourier transforms Hadamard ordering Image quality Image reconstruction Image resolution Imaging Noise levels Photodetectors Pixels Quality assessment Reconstruction algorithms Sampling Sensors Signal and Image processing Signal resolution Signal to noise ratio Simulation single pixel imaging |
title | Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-Ordering%20of%20Hadamard%20Matrix%20Using%20Fourier%20Transform%20and%20Gray-Level%20Co-Occurrence%20Matrix%20for%20Compressive%20Single-Pixel%20Imaging%20in%20Low%20Resolution%20Images&rft.jtitle=IEEE%20access&rft.au=Vaz,%20Pedro%20G.&rft.date=2022&rft.volume=10&rft.spage=46975&rft.epage=46985&rft.pages=46975-46985&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3171334&rft_dat=%3Cproquest_ieee_%3E2660159690%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660159690&rft_id=info:pmid/&rft_ieee_id=9765455&rft_doaj_id=oai_doaj_org_article_14a4783f927b493a85d0c997022e9715&rfr_iscdi=true |