Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images

One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.46975-46985
Hauptverfasser: Vaz, Pedro G., Gaudencio, Andreia S., Ferreira, L. F. Requicha, Humeau-Heurtier, Anne, Morgado, Miguel, Cardoso, Joao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46985
container_issue
container_start_page 46975
container_title IEEE access
container_volume 10
creator Vaz, Pedro G.
Gaudencio, Andreia S.
Ferreira, L. F. Requicha
Humeau-Heurtier, Anne
Morgado, Miguel
Cardoso, Joao
description One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to 128\,{\times }\,128 ). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.
doi_str_mv 10.1109/ACCESS.2022.3171334
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2660159690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9765455</ieee_id><doaj_id>oai_doaj_org_article_14a4783f927b493a85d0c997022e9715</doaj_id><sourcerecordid>2660159690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</originalsourceid><addsrcrecordid>eNpVkU1u2zAQhYWiBRqkOUE2BLrqQi5_RXFpCElsQIWLOFkTFDVyaciiS8pucpMet1SUBi03Q8y89wEzL8uuCV4QgtXXZVXdbLcLiildMCIJY_xddkFJoXImWPH-n__H7CrGPU6vTC0hL7Lf95BvQgvBDTvkO7QyrTmY0KJvZgzuCT3GaXDrT8FBQA_BDLHz4YDM0KK7YJ7zGs7Qo8rnG2tPIcBg4a83CdPgcAwQozsD2iZUD_l395Qc64PZTWg3oNr_QvcQfX8anR9eJhA_ZR8600e4eq2X2ePtzUO1yuvN3bpa1rnlnI550VIli5Z01lLaFA02nHe0aTAzlFLZ2dKYUhZd0kFJuCyhE1w21FpLSiwUu8zWM7f1Zq-PwaXtn7U3Tr80fNhpE0Zne9CEmwRgnaKy4YqZUrTYKiXT4UFJIhLry8z6Yfr_UKtlraceZkWBBeNnkrSfZ-0x-J8niKPepyMPaVVNk4gIVSicVGxW2eBjDNC9YQnWU_p6Tl9P6evX9JPrenY5AHhzpDsJLgT7A3daqnY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159690</pqid></control><display><type>article</type><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</creator><creatorcontrib>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</creatorcontrib><description>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;128\,{\times }\,128 &lt;/tex-math&gt;&lt;/inline-formula&gt;). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3171334</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Compressive sensing ; Datasets ; Engineering Sciences ; Fourier transform ; Fourier transforms ; Hadamard ordering ; Image quality ; Image reconstruction ; Image resolution ; Imaging ; Noise levels ; Photodetectors ; Pixels ; Quality assessment ; Reconstruction algorithms ; Sampling ; Sensors ; Signal and Image processing ; Signal resolution ; Signal to noise ratio ; Simulation ; single pixel imaging</subject><ispartof>IEEE access, 2022, Vol.10, p.46975-46985</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</citedby><cites>FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</cites><orcidid>0000-0001-9455-1206 ; 0000-0003-3490-7789 ; 0000-0002-6289-0040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9765455$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,2095,4009,27612,27902,27903,27904,54912</link.rule.ids><backlink>$$Uhttps://univ-angers.hal.science/hal-03660534$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaz, Pedro G.</creatorcontrib><creatorcontrib>Gaudencio, Andreia S.</creatorcontrib><creatorcontrib>Ferreira, L. F. Requicha</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Morgado, Miguel</creatorcontrib><creatorcontrib>Cardoso, Joao</creatorcontrib><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><title>IEEE access</title><addtitle>Access</addtitle><description>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;128\,{\times }\,128 &lt;/tex-math&gt;&lt;/inline-formula&gt;). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Compressive sensing</subject><subject>Datasets</subject><subject>Engineering Sciences</subject><subject>Fourier transform</subject><subject>Fourier transforms</subject><subject>Hadamard ordering</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Noise levels</subject><subject>Photodetectors</subject><subject>Pixels</subject><subject>Quality assessment</subject><subject>Reconstruction algorithms</subject><subject>Sampling</subject><subject>Sensors</subject><subject>Signal and Image processing</subject><subject>Signal resolution</subject><subject>Signal to noise ratio</subject><subject>Simulation</subject><subject>single pixel imaging</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1u2zAQhYWiBRqkOUE2BLrqQi5_RXFpCElsQIWLOFkTFDVyaciiS8pucpMet1SUBi03Q8y89wEzL8uuCV4QgtXXZVXdbLcLiildMCIJY_xddkFJoXImWPH-n__H7CrGPU6vTC0hL7Lf95BvQgvBDTvkO7QyrTmY0KJvZgzuCT3GaXDrT8FBQA_BDLHz4YDM0KK7YJ7zGs7Qo8rnG2tPIcBg4a83CdPgcAwQozsD2iZUD_l395Qc64PZTWg3oNr_QvcQfX8anR9eJhA_ZR8600e4eq2X2ePtzUO1yuvN3bpa1rnlnI550VIli5Z01lLaFA02nHe0aTAzlFLZ2dKYUhZd0kFJuCyhE1w21FpLSiwUu8zWM7f1Zq-PwaXtn7U3Tr80fNhpE0Zne9CEmwRgnaKy4YqZUrTYKiXT4UFJIhLry8z6Yfr_UKtlraceZkWBBeNnkrSfZ-0x-J8niKPepyMPaVVNk4gIVSicVGxW2eBjDNC9YQnWU_p6Tl9P6evX9JPrenY5AHhzpDsJLgT7A3daqnY</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Vaz, Pedro G.</creator><creator>Gaudencio, Andreia S.</creator><creator>Ferreira, L. F. Requicha</creator><creator>Humeau-Heurtier, Anne</creator><creator>Morgado, Miguel</creator><creator>Cardoso, Joao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9455-1206</orcidid><orcidid>https://orcid.org/0000-0003-3490-7789</orcidid><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid></search><sort><creationdate>2022</creationdate><title>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</title><author>Vaz, Pedro G. ; Gaudencio, Andreia S. ; Ferreira, L. F. Requicha ; Humeau-Heurtier, Anne ; Morgado, Miguel ; Cardoso, Joao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-6d2976d1fcc22b6b0a44f2bb03a2227fc8aa876f6d2e81478ef547b2ccc180593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Compressive sensing</topic><topic>Datasets</topic><topic>Engineering Sciences</topic><topic>Fourier transform</topic><topic>Fourier transforms</topic><topic>Hadamard ordering</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Noise levels</topic><topic>Photodetectors</topic><topic>Pixels</topic><topic>Quality assessment</topic><topic>Reconstruction algorithms</topic><topic>Sampling</topic><topic>Sensors</topic><topic>Signal and Image processing</topic><topic>Signal resolution</topic><topic>Signal to noise ratio</topic><topic>Simulation</topic><topic>single pixel imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaz, Pedro G.</creatorcontrib><creatorcontrib>Gaudencio, Andreia S.</creatorcontrib><creatorcontrib>Ferreira, L. F. Requicha</creatorcontrib><creatorcontrib>Humeau-Heurtier, Anne</creatorcontrib><creatorcontrib>Morgado, Miguel</creatorcontrib><creatorcontrib>Cardoso, Joao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vaz, Pedro G.</au><au>Gaudencio, Andreia S.</au><au>Ferreira, L. F. Requicha</au><au>Humeau-Heurtier, Anne</au><au>Morgado, Miguel</au><au>Cardoso, Joao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>46975</spage><epage>46985</epage><pages>46975-46985</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>One of the most active research fields in single-pixel imaging is the influence of the sampling basis and its order in the quality of the reconstructed images. This paper presents two new orders, ascending scale (AS) and ascending inertia (AI), of the Hadamard basis and test their performance, using simulation and experimental methods, for low sampling ratios (0.5 to 0.01) in low resolution images (up to &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;128\,{\times }\,128 &lt;/tex-math&gt;&lt;/inline-formula&gt;). These orders were compared with two state-of-the-art orders, cake-cutting (CC) and total gradient (TG), using TVAL3 as the reconstruction algorithm and three noise levels. These newly proposed orders have better reconstructed image quality on the simulation data set (110 images) and achieved structure similarity index values higher than CC order. The experimental data set (2 images) showed that the AS and AI orders performed better with a sampling ratio of 0.5, while for lower sampling ratio the performance of AS, AI and CC was similar. The TG order performed worst in the majority of the cases. Finally, the simulation results present clear evidence that peak signal-to-noise ratio (PSNR) is not a reliable image quality assessment (IQA) metric to assess image reconstruction quality in the context of single pixel imaging.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3171334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9455-1206</orcidid><orcidid>https://orcid.org/0000-0003-3490-7789</orcidid><orcidid>https://orcid.org/0000-0002-6289-0040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.46975-46985
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2660159690
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Compressive sensing
Datasets
Engineering Sciences
Fourier transform
Fourier transforms
Hadamard ordering
Image quality
Image reconstruction
Image resolution
Imaging
Noise levels
Photodetectors
Pixels
Quality assessment
Reconstruction algorithms
Sampling
Sensors
Signal and Image processing
Signal resolution
Signal to noise ratio
Simulation
single pixel imaging
title Re-Ordering of Hadamard Matrix Using Fourier Transform and Gray-Level Co-Occurrence Matrix for Compressive Single-Pixel Imaging in Low Resolution Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-Ordering%20of%20Hadamard%20Matrix%20Using%20Fourier%20Transform%20and%20Gray-Level%20Co-Occurrence%20Matrix%20for%20Compressive%20Single-Pixel%20Imaging%20in%20Low%20Resolution%20Images&rft.jtitle=IEEE%20access&rft.au=Vaz,%20Pedro%20G.&rft.date=2022&rft.volume=10&rft.spage=46975&rft.epage=46985&rft.pages=46975-46985&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3171334&rft_dat=%3Cproquest_ieee_%3E2660159690%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660159690&rft_id=info:pmid/&rft_ieee_id=9765455&rft_doaj_id=oai_doaj_org_article_14a4783f927b493a85d0c997022e9715&rfr_iscdi=true