Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries

Camera calibration is among the most challenging aspects of the investigation of fluid flows around complex transparent geometries, due to the optical distortions caused by the refraction of the lines-of-sight at the solid/fluid interfaces. This work presents a camera model which exploits the pinhol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-06, Vol.44 (6), p.3185-3196
Hauptverfasser: Paolillo, Gerardo, Astarita, Tommaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3196
container_issue 6
container_start_page 3185
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 44
creator Paolillo, Gerardo
Astarita, Tommaso
description Camera calibration is among the most challenging aspects of the investigation of fluid flows around complex transparent geometries, due to the optical distortions caused by the refraction of the lines-of-sight at the solid/fluid interfaces. This work presents a camera model which exploits the pinhole-camera approximation and represents the refraction of the lines-of-sight directly via Snell's law. The model is based on the computation of the optical ray distortion in the 3D scene and dewarping of the object points to be projected. The present procedure is shown to offer a faster convergence rate and greater robustness than other similar methods available in the literature. Issues inherent to estimation of the refractive extrinsic and intrinsic parameters are discussed and feasible calibration approaches are proposed. The effects of image noise, volume size of the control point grid and number of cameras on the calibration procedure are analyzed. Finally, an application of the camera model to the 3D optical velocimetry measurements of thermal convection inside a polymethylmethacrylate (PMMA) cylinder immersed in water is presented. A specific calibration procedure is designed for such a challenging experiment where the cylinder interior is not physically accessible and its effectiveness is demonstrated by providing velocity field reconstructions.
doi_str_mv 10.1109/TPAMI.2020.3046467
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2660159523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9303393</ieee_id><sourcerecordid>2660159523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3107-9417b67fa31dc5228a7553bc51e530e39eee341a38f78dc1f4d6e75f17f1144f3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS1ERZeWPwASssSFS7Yejx0nx2oFpVJXraoCR8ubjIWrJA52gui_J8suPXCakeZ7TzPzGHsLYg0g6ouHu8vt9VoKKdYoVKlK84KtoMa6QI31S7YSUMqiqmR1yl7n_CgEKC3wFTtFRA1GVSs23FHKIzVT-EV843pKjm9jSx3_HqYf_J58csswDnwTU6JD62Pit-MUGtfxb9TFJvQ0pSe-JZfnRD0NU-ZhL-nHjn7zK4p7IFA-ZyfedZneHOsZ-_r508PmS3Fze3W9ubwpGgRhilqB2ZXGO4S20VJWzmiNu0YDaRSENRGhAoeVN1XbgFdtSUZ7MB5AKY9n7OPBd0zx50x5sn3IDXWdGyjO2UplUAlEAQv64T_0Mc5pWLazsiwF6FpLXCh5oJoUc07k7ZhC79KTBWH3adi_adh9GvaYxiJ6f7Sedz21z5J_71-AdwcgLAc9j2tcNqsR_wDEVY5q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159523</pqid></control><display><type>article</type><title>Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries</title><source>IEEE Electronic Library (IEL)</source><creator>Paolillo, Gerardo ; Astarita, Tommaso</creator><creatorcontrib>Paolillo, Gerardo ; Astarita, Tommaso</creatorcontrib><description>Camera calibration is among the most challenging aspects of the investigation of fluid flows around complex transparent geometries, due to the optical distortions caused by the refraction of the lines-of-sight at the solid/fluid interfaces. This work presents a camera model which exploits the pinhole-camera approximation and represents the refraction of the lines-of-sight directly via Snell's law. The model is based on the computation of the optical ray distortion in the 3D scene and dewarping of the object points to be projected. The present procedure is shown to offer a faster convergence rate and greater robustness than other similar methods available in the literature. Issues inherent to estimation of the refractive extrinsic and intrinsic parameters are discussed and feasible calibration approaches are proposed. The effects of image noise, volume size of the control point grid and number of cameras on the calibration procedure are analyzed. Finally, an application of the camera model to the 3D optical velocimetry measurements of thermal convection inside a polymethylmethacrylate (PMMA) cylinder immersed in water is presented. A specific calibration procedure is designed for such a challenging experiment where the cylinder interior is not physically accessible and its effectiveness is demonstrated by providing velocity field reconstructions.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3046467</identifier><identifier>PMID: 33351748</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Calibration ; Camera calibration ; Cameras ; computer vision ; Cylinders ; Distortion ; flow visualization ; Fluid dynamics ; Fluid flow ; Free convection ; Geometry ; Line of sight ; Optical distortion ; perspective camera model ; Pinholes ; Ray tracing ; Refraction ; refractive geometry ; Snells law ; Solid modeling ; Three dimensional models ; Velocimetry ; Velocity distribution</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-06, Vol.44 (6), p.3185-3196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3107-9417b67fa31dc5228a7553bc51e530e39eee341a38f78dc1f4d6e75f17f1144f3</citedby><cites>FETCH-LOGICAL-c3107-9417b67fa31dc5228a7553bc51e530e39eee341a38f78dc1f4d6e75f17f1144f3</cites><orcidid>0000-0002-4749-0575 ; 0000-0003-1656-1323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9303393$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33351748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paolillo, Gerardo</creatorcontrib><creatorcontrib>Astarita, Tommaso</creatorcontrib><title>Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Camera calibration is among the most challenging aspects of the investigation of fluid flows around complex transparent geometries, due to the optical distortions caused by the refraction of the lines-of-sight at the solid/fluid interfaces. This work presents a camera model which exploits the pinhole-camera approximation and represents the refraction of the lines-of-sight directly via Snell's law. The model is based on the computation of the optical ray distortion in the 3D scene and dewarping of the object points to be projected. The present procedure is shown to offer a faster convergence rate and greater robustness than other similar methods available in the literature. Issues inherent to estimation of the refractive extrinsic and intrinsic parameters are discussed and feasible calibration approaches are proposed. The effects of image noise, volume size of the control point grid and number of cameras on the calibration procedure are analyzed. Finally, an application of the camera model to the 3D optical velocimetry measurements of thermal convection inside a polymethylmethacrylate (PMMA) cylinder immersed in water is presented. A specific calibration procedure is designed for such a challenging experiment where the cylinder interior is not physically accessible and its effectiveness is demonstrated by providing velocity field reconstructions.</description><subject>Calibration</subject><subject>Camera calibration</subject><subject>Cameras</subject><subject>computer vision</subject><subject>Cylinders</subject><subject>Distortion</subject><subject>flow visualization</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Geometry</subject><subject>Line of sight</subject><subject>Optical distortion</subject><subject>perspective camera model</subject><subject>Pinholes</subject><subject>Ray tracing</subject><subject>Refraction</subject><subject>refractive geometry</subject><subject>Snells law</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Velocimetry</subject><subject>Velocity distribution</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpdkUFv1DAQhS1ERZeWPwASssSFS7Yejx0nx2oFpVJXraoCR8ubjIWrJA52gui_J8suPXCakeZ7TzPzGHsLYg0g6ouHu8vt9VoKKdYoVKlK84KtoMa6QI31S7YSUMqiqmR1yl7n_CgEKC3wFTtFRA1GVSs23FHKIzVT-EV843pKjm9jSx3_HqYf_J58csswDnwTU6JD62Pit-MUGtfxb9TFJvQ0pSe-JZfnRD0NU-ZhL-nHjn7zK4p7IFA-ZyfedZneHOsZ-_r508PmS3Fze3W9ubwpGgRhilqB2ZXGO4S20VJWzmiNu0YDaRSENRGhAoeVN1XbgFdtSUZ7MB5AKY9n7OPBd0zx50x5sn3IDXWdGyjO2UplUAlEAQv64T_0Mc5pWLazsiwF6FpLXCh5oJoUc07k7ZhC79KTBWH3adi_adh9GvaYxiJ6f7Sedz21z5J_71-AdwcgLAc9j2tcNqsR_wDEVY5q</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Paolillo, Gerardo</creator><creator>Astarita, Tommaso</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4749-0575</orcidid><orcidid>https://orcid.org/0000-0003-1656-1323</orcidid></search><sort><creationdate>202206</creationdate><title>Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries</title><author>Paolillo, Gerardo ; Astarita, Tommaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3107-9417b67fa31dc5228a7553bc51e530e39eee341a38f78dc1f4d6e75f17f1144f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Camera calibration</topic><topic>Cameras</topic><topic>computer vision</topic><topic>Cylinders</topic><topic>Distortion</topic><topic>flow visualization</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Geometry</topic><topic>Line of sight</topic><topic>Optical distortion</topic><topic>perspective camera model</topic><topic>Pinholes</topic><topic>Ray tracing</topic><topic>Refraction</topic><topic>refractive geometry</topic><topic>Snells law</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Velocimetry</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolillo, Gerardo</creatorcontrib><creatorcontrib>Astarita, Tommaso</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolillo, Gerardo</au><au>Astarita, Tommaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-06</date><risdate>2022</risdate><volume>44</volume><issue>6</issue><spage>3185</spage><epage>3196</epage><pages>3185-3196</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Camera calibration is among the most challenging aspects of the investigation of fluid flows around complex transparent geometries, due to the optical distortions caused by the refraction of the lines-of-sight at the solid/fluid interfaces. This work presents a camera model which exploits the pinhole-camera approximation and represents the refraction of the lines-of-sight directly via Snell's law. The model is based on the computation of the optical ray distortion in the 3D scene and dewarping of the object points to be projected. The present procedure is shown to offer a faster convergence rate and greater robustness than other similar methods available in the literature. Issues inherent to estimation of the refractive extrinsic and intrinsic parameters are discussed and feasible calibration approaches are proposed. The effects of image noise, volume size of the control point grid and number of cameras on the calibration procedure are analyzed. Finally, an application of the camera model to the 3D optical velocimetry measurements of thermal convection inside a polymethylmethacrylate (PMMA) cylinder immersed in water is presented. A specific calibration procedure is designed for such a challenging experiment where the cylinder interior is not physically accessible and its effectiveness is demonstrated by providing velocity field reconstructions.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33351748</pmid><doi>10.1109/TPAMI.2020.3046467</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4749-0575</orcidid><orcidid>https://orcid.org/0000-0003-1656-1323</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2022-06, Vol.44 (6), p.3185-3196
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2660159523
source IEEE Electronic Library (IEL)
subjects Calibration
Camera calibration
Cameras
computer vision
Cylinders
Distortion
flow visualization
Fluid dynamics
Fluid flow
Free convection
Geometry
Line of sight
Optical distortion
perspective camera model
Pinholes
Ray tracing
Refraction
refractive geometry
Snells law
Solid modeling
Three dimensional models
Velocimetry
Velocity distribution
title Perspective Camera Model With Refraction Correction for Optical Velocimetry Measurements in Complex Geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%20Camera%20Model%20With%20Refraction%20Correction%20for%20Optical%20Velocimetry%20Measurements%20in%20Complex%20Geometries&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Paolillo,%20Gerardo&rft.date=2022-06&rft.volume=44&rft.issue=6&rft.spage=3185&rft.epage=3196&rft.pages=3185-3196&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3046467&rft_dat=%3Cproquest_pubme%3E2660159523%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660159523&rft_id=info:pmid/33351748&rft_ieee_id=9303393&rfr_iscdi=true