Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder

As the critical dimension of transistors has become lower and the stacked layer of semiconductors has become higher, virtual diagnostics to monitor the status of plasma in an etching process has been important because of the reliability of process. In this study, we proposed the model to predict a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 2022-05, Vol.35 (2), p.256-265
Hauptverfasser: Kwon, Ohyung, Lee, Nayeon, Kim, Kangil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 256
container_title IEEE transactions on semiconductor manufacturing
container_volume 35
creator Kwon, Ohyung
Lee, Nayeon
Kim, Kangil
description As the critical dimension of transistors has become lower and the stacked layer of semiconductors has become higher, virtual diagnostics to monitor the status of plasma in an etching process has been important because of the reliability of process. In this study, we proposed the model to predict a plasma density of the etch equipment with high accuracy using OES data despite a small number of process conditions. The proposed model could improve the prediction performance of multilayer perceptron by using pre-trained variational auto-encoder as an initializer and had the best performance of several regression methods. At application point of view, it is expected that the model can be used to monitor a plasma density when a wafer is absent from the chamber. Moreover, using the proposed model can more easily understand the status of plasma rather than monitoring thousands of sensor data even without the knowledge about plasma.
doi_str_mv 10.1109/TSM.2022.3154366
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2660159459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9721398</ieee_id><sourcerecordid>2660159459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-686375594b952452af2fa45b50e0df0ac38ed83fc098fd5c28be23cb9480b0aa3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWD_ugpeA56353E2OolULioK21yWbTWqkm9QkK_TmTzda8TQD887DzAPAGUZTjJG8fH15nBJEyJRizmhd74EJ5lxUhDK-DyZISFbVHDWH4Cild4QwY7KZgK_5sInh0wzGZxgsXLqYR7WGN06tfEjZ6QSfTbQhDsprA0sDn9cqDQreGJ9c3kLn4YsZnA6-H3Uu81nWb3D2MbrNL3WRnF_BpYpOZRd8gV-NOVQzr0Nv4gk4sGqdzOlfPQaL29nr9X318HQ3v756qDTlTa5qUdOGc8k6yQnjRFliFeMdRwb1FilNhekFtRpJYXuuiegMobqTTKAOKUWPwcWOW979GE3K7XsYY7kmtaSuES5oLksK7VI6hpSise0mukHFbYtR--O5LZ7bH8_tn-eycr5bccaY_7hsCKZS0G8qJ3uA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660159459</pqid></control><display><type>article</type><title>Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder</title><source>IEEE Electronic Library (IEL)</source><creator>Kwon, Ohyung ; Lee, Nayeon ; Kim, Kangil</creator><creatorcontrib>Kwon, Ohyung ; Lee, Nayeon ; Kim, Kangil</creatorcontrib><description>As the critical dimension of transistors has become lower and the stacked layer of semiconductors has become higher, virtual diagnostics to monitor the status of plasma in an etching process has been important because of the reliability of process. In this study, we proposed the model to predict a plasma density of the etch equipment with high accuracy using OES data despite a small number of process conditions. The proposed model could improve the prediction performance of multilayer perceptron by using pre-trained variational auto-encoder as an initializer and had the best performance of several regression methods. At application point of view, it is expected that the model can be used to monitor a plasma density when a wafer is absent from the chamber. Moreover, using the proposed model can more easily understand the status of plasma rather than monitoring thousands of sensor data even without the knowledge about plasma.</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/TSM.2022.3154366</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Convolutional neural networks ; Data models ; Deep learning ; Feature extraction ; Multilayer perceptrons ; OES ; Plasma ; Plasma density ; Plasmas ; Predictive models ; Semiconductor device modeling ; Transistors ; variational auto-encoder ; virtual diagnostics</subject><ispartof>IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.256-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-686375594b952452af2fa45b50e0df0ac38ed83fc098fd5c28be23cb9480b0aa3</citedby><cites>FETCH-LOGICAL-c357t-686375594b952452af2fa45b50e0df0ac38ed83fc098fd5c28be23cb9480b0aa3</cites><orcidid>0000-0001-9848-9374 ; 0000-0003-3220-6401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9721398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9721398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kwon, Ohyung</creatorcontrib><creatorcontrib>Lee, Nayeon</creatorcontrib><creatorcontrib>Kim, Kangil</creatorcontrib><title>Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>As the critical dimension of transistors has become lower and the stacked layer of semiconductors has become higher, virtual diagnostics to monitor the status of plasma in an etching process has been important because of the reliability of process. In this study, we proposed the model to predict a plasma density of the etch equipment with high accuracy using OES data despite a small number of process conditions. The proposed model could improve the prediction performance of multilayer perceptron by using pre-trained variational auto-encoder as an initializer and had the best performance of several regression methods. At application point of view, it is expected that the model can be used to monitor a plasma density when a wafer is absent from the chamber. Moreover, using the proposed model can more easily understand the status of plasma rather than monitoring thousands of sensor data even without the knowledge about plasma.</description><subject>Coders</subject><subject>Convolutional neural networks</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Multilayer perceptrons</subject><subject>OES</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Plasmas</subject><subject>Predictive models</subject><subject>Semiconductor device modeling</subject><subject>Transistors</subject><subject>variational auto-encoder</subject><subject>virtual diagnostics</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWD_ugpeA56353E2OolULioK21yWbTWqkm9QkK_TmTzda8TQD887DzAPAGUZTjJG8fH15nBJEyJRizmhd74EJ5lxUhDK-DyZISFbVHDWH4Cild4QwY7KZgK_5sInh0wzGZxgsXLqYR7WGN06tfEjZ6QSfTbQhDsprA0sDn9cqDQreGJ9c3kLn4YsZnA6-H3Uu81nWb3D2MbrNL3WRnF_BpYpOZRd8gV-NOVQzr0Nv4gk4sGqdzOlfPQaL29nr9X318HQ3v756qDTlTa5qUdOGc8k6yQnjRFliFeMdRwb1FilNhekFtRpJYXuuiegMobqTTKAOKUWPwcWOW979GE3K7XsYY7kmtaSuES5oLksK7VI6hpSise0mukHFbYtR--O5LZ7bH8_tn-eycr5bccaY_7hsCKZS0G8qJ3uA</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kwon, Ohyung</creator><creator>Lee, Nayeon</creator><creator>Kim, Kangil</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9848-9374</orcidid><orcidid>https://orcid.org/0000-0003-3220-6401</orcidid></search><sort><creationdate>20220501</creationdate><title>Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder</title><author>Kwon, Ohyung ; Lee, Nayeon ; Kim, Kangil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-686375594b952452af2fa45b50e0df0ac38ed83fc098fd5c28be23cb9480b0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Convolutional neural networks</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Multilayer perceptrons</topic><topic>OES</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Plasmas</topic><topic>Predictive models</topic><topic>Semiconductor device modeling</topic><topic>Transistors</topic><topic>variational auto-encoder</topic><topic>virtual diagnostics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Ohyung</creatorcontrib><creatorcontrib>Lee, Nayeon</creatorcontrib><creatorcontrib>Kim, Kangil</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kwon, Ohyung</au><au>Lee, Nayeon</au><au>Kim, Kangil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>256</spage><epage>265</epage><pages>256-265</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>As the critical dimension of transistors has become lower and the stacked layer of semiconductors has become higher, virtual diagnostics to monitor the status of plasma in an etching process has been important because of the reliability of process. In this study, we proposed the model to predict a plasma density of the etch equipment with high accuracy using OES data despite a small number of process conditions. The proposed model could improve the prediction performance of multilayer perceptron by using pre-trained variational auto-encoder as an initializer and had the best performance of several regression methods. At application point of view, it is expected that the model can be used to monitor a plasma density when a wafer is absent from the chamber. Moreover, using the proposed model can more easily understand the status of plasma rather than monitoring thousands of sensor data even without the knowledge about plasma.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSM.2022.3154366</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9848-9374</orcidid><orcidid>https://orcid.org/0000-0003-3220-6401</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 2022-05, Vol.35 (2), p.256-265
issn 0894-6507
1558-2345
language eng
recordid cdi_proquest_journals_2660159459
source IEEE Electronic Library (IEL)
subjects Coders
Convolutional neural networks
Data models
Deep learning
Feature extraction
Multilayer perceptrons
OES
Plasma
Plasma density
Plasmas
Predictive models
Semiconductor device modeling
Transistors
variational auto-encoder
virtual diagnostics
title Improvement of Virtual Diagnostics Performance for Plasma Density in Semiconductor Etch Equipment Using Variational Auto-Encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Virtual%20Diagnostics%20Performance%20for%20Plasma%20Density%20in%20Semiconductor%20Etch%20Equipment%20Using%20Variational%20Auto-Encoder&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Kwon,%20Ohyung&rft.date=2022-05-01&rft.volume=35&rft.issue=2&rft.spage=256&rft.epage=265&rft.pages=256-265&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/TSM.2022.3154366&rft_dat=%3Cproquest_RIE%3E2660159459%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660159459&rft_id=info:pmid/&rft_ieee_id=9721398&rfr_iscdi=true