Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables
Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2022-05, Vol.26 (5), p.2063-2074 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2074 |
---|---|
container_issue | 5 |
container_start_page | 2063 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 26 |
creator | Zhu, Li Nathan, Viswam Kuang, Jilong Kim, Jacob Avram, Robert Olgin, Jeffrey Gao, Jun |
description | Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%. |
doi_str_mv | 10.1109/JBHI.2021.3131984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2660158848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9633021</ieee_id><sourcerecordid>2606932944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4Mobsz9ASJIwYuXzpcfjclxm5ubDLw4PJY0fYWOrp1JK_jfm7nNg5hLHi-f9-XlQ8g1hRGloB9eJovliAGjI0451UqckT6jUsWMgTo_1VSLHhl6v4FwVGhpeUl6XKgkkcD7ZD1uXWmqaF5mrqwq05ZNHT1hi_anMnUe_UdMOpdjHc18W24Pnc_SRO9onMkq9FfkojCVx-HxHpD1fPY2XcSr1-fldLyKLRe6jW2SYK4eEaixojBcCCsLZhnLKag8UQCSg7SFRCgEp1QayJhVYIXQmVaMD8j9IXfnmo8OfZtuS28xbFlj0_mUSZCaMy1EQO_-oJumc3XYLlASaKKUUIGiB8q6xnuHRbpz4YfuK6WQ7rWne-3pXnt61B5mbo_JXbbF_HfiJDkANwegRMTfZy05DzH8G08EhJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660158848</pqid></control><display><type>article</type><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</creator><creatorcontrib>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</creatorcontrib><description>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3131984</identifier><identifier>PMID: 34855603</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>AF burden ; Algorithms ; atrial fibrillation (AF) ; Atrial Fibrillation - diagnosis ; Cardiac arrhythmia ; Complications ; digital health ; Electrocardiography ; Fibrillation ; Heart ; Humans ; Image color analysis ; Monitoring ; Monitoring, Physiologic ; Photoplethysmography ; photoplethysmography (PPG) ; Sensitivity ; Smartwatches ; Watches ; wearable ; Wearable computers ; Wearable Electronic Devices ; Wearable technology ; World population</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2063-2074</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</citedby><cites>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</cites><orcidid>0000-0002-8490-0270 ; 0000-0003-0767-7471 ; 0000-0003-2942-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9633021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9633021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34855603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Nathan, Viswam</creatorcontrib><creatorcontrib>Kuang, Jilong</creatorcontrib><creatorcontrib>Kim, Jacob</creatorcontrib><creatorcontrib>Avram, Robert</creatorcontrib><creatorcontrib>Olgin, Jeffrey</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</description><subject>AF burden</subject><subject>Algorithms</subject><subject>atrial fibrillation (AF)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Cardiac arrhythmia</subject><subject>Complications</subject><subject>digital health</subject><subject>Electrocardiography</subject><subject>Fibrillation</subject><subject>Heart</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic</subject><subject>Photoplethysmography</subject><subject>photoplethysmography (PPG)</subject><subject>Sensitivity</subject><subject>Smartwatches</subject><subject>Watches</subject><subject>wearable</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><subject>World population</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNptkM9LwzAUx4Mobsz9ASJIwYuXzpcfjclxm5ubDLw4PJY0fYWOrp1JK_jfm7nNg5hLHi-f9-XlQ8g1hRGloB9eJovliAGjI0451UqckT6jUsWMgTo_1VSLHhl6v4FwVGhpeUl6XKgkkcD7ZD1uXWmqaF5mrqwq05ZNHT1hi_anMnUe_UdMOpdjHc18W24Pnc_SRO9onMkq9FfkojCVx-HxHpD1fPY2XcSr1-fldLyKLRe6jW2SYK4eEaixojBcCCsLZhnLKag8UQCSg7SFRCgEp1QayJhVYIXQmVaMD8j9IXfnmo8OfZtuS28xbFlj0_mUSZCaMy1EQO_-oJumc3XYLlASaKKUUIGiB8q6xnuHRbpz4YfuK6WQ7rWne-3pXnt61B5mbo_JXbbF_HfiJDkANwegRMTfZy05DzH8G08EhJI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhu, Li</creator><creator>Nathan, Viswam</creator><creator>Kuang, Jilong</creator><creator>Kim, Jacob</creator><creator>Avram, Robert</creator><creator>Olgin, Jeffrey</creator><creator>Gao, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8490-0270</orcidid><orcidid>https://orcid.org/0000-0003-0767-7471</orcidid><orcidid>https://orcid.org/0000-0003-2942-9102</orcidid></search><sort><creationdate>20220501</creationdate><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><author>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AF burden</topic><topic>Algorithms</topic><topic>atrial fibrillation (AF)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Cardiac arrhythmia</topic><topic>Complications</topic><topic>digital health</topic><topic>Electrocardiography</topic><topic>Fibrillation</topic><topic>Heart</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic</topic><topic>Photoplethysmography</topic><topic>photoplethysmography (PPG)</topic><topic>Sensitivity</topic><topic>Smartwatches</topic><topic>Watches</topic><topic>wearable</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><topic>World population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Nathan, Viswam</creatorcontrib><creatorcontrib>Kuang, Jilong</creatorcontrib><creatorcontrib>Kim, Jacob</creatorcontrib><creatorcontrib>Avram, Robert</creatorcontrib><creatorcontrib>Olgin, Jeffrey</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Li</au><au>Nathan, Viswam</au><au>Kuang, Jilong</au><au>Kim, Jacob</au><au>Avram, Robert</au><au>Olgin, Jeffrey</au><au>Gao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>2063</spage><epage>2074</epage><pages>2063-2074</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34855603</pmid><doi>10.1109/JBHI.2021.3131984</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8490-0270</orcidid><orcidid>https://orcid.org/0000-0003-0767-7471</orcidid><orcidid>https://orcid.org/0000-0003-2942-9102</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2063-2074 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_journals_2660158848 |
source | IEEE Electronic Library (IEL) |
subjects | AF burden Algorithms atrial fibrillation (AF) Atrial Fibrillation - diagnosis Cardiac arrhythmia Complications digital health Electrocardiography Fibrillation Heart Humans Image color analysis Monitoring Monitoring, Physiologic Photoplethysmography photoplethysmography (PPG) Sensitivity Smartwatches Watches wearable Wearable computers Wearable Electronic Devices Wearable technology World population |
title | Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atrial%20Fibrillation%20Detection%20and%20Atrial%20Fibrillation%20Burden%20Estimation%20via%20Wearables&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhu,%20Li&rft.date=2022-05-01&rft.volume=26&rft.issue=5&rft.spage=2063&rft.epage=2074&rft.pages=2063-2074&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3131984&rft_dat=%3Cproquest_RIE%3E2606932944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660158848&rft_id=info:pmid/34855603&rft_ieee_id=9633021&rfr_iscdi=true |