Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables

Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-05, Vol.26 (5), p.2063-2074
Hauptverfasser: Zhu, Li, Nathan, Viswam, Kuang, Jilong, Kim, Jacob, Avram, Robert, Olgin, Jeffrey, Gao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2074
container_issue 5
container_start_page 2063
container_title IEEE journal of biomedical and health informatics
container_volume 26
creator Zhu, Li
Nathan, Viswam
Kuang, Jilong
Kim, Jacob
Avram, Robert
Olgin, Jeffrey
Gao, Jun
description Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.
doi_str_mv 10.1109/JBHI.2021.3131984
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2660158848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9633021</ieee_id><sourcerecordid>2606932944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4Mobsz9ASJIwYuXzpcfjclxm5ubDLw4PJY0fYWOrp1JK_jfm7nNg5hLHi-f9-XlQ8g1hRGloB9eJovliAGjI0451UqckT6jUsWMgTo_1VSLHhl6v4FwVGhpeUl6XKgkkcD7ZD1uXWmqaF5mrqwq05ZNHT1hi_anMnUe_UdMOpdjHc18W24Pnc_SRO9onMkq9FfkojCVx-HxHpD1fPY2XcSr1-fldLyKLRe6jW2SYK4eEaixojBcCCsLZhnLKag8UQCSg7SFRCgEp1QayJhVYIXQmVaMD8j9IXfnmo8OfZtuS28xbFlj0_mUSZCaMy1EQO_-oJumc3XYLlASaKKUUIGiB8q6xnuHRbpz4YfuK6WQ7rWne-3pXnt61B5mbo_JXbbF_HfiJDkANwegRMTfZy05DzH8G08EhJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660158848</pqid></control><display><type>article</type><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</creator><creatorcontrib>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</creatorcontrib><description>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2021.3131984</identifier><identifier>PMID: 34855603</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>AF burden ; Algorithms ; atrial fibrillation (AF) ; Atrial Fibrillation - diagnosis ; Cardiac arrhythmia ; Complications ; digital health ; Electrocardiography ; Fibrillation ; Heart ; Humans ; Image color analysis ; Monitoring ; Monitoring, Physiologic ; Photoplethysmography ; photoplethysmography (PPG) ; Sensitivity ; Smartwatches ; Watches ; wearable ; Wearable computers ; Wearable Electronic Devices ; Wearable technology ; World population</subject><ispartof>IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2063-2074</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</citedby><cites>FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</cites><orcidid>0000-0002-8490-0270 ; 0000-0003-0767-7471 ; 0000-0003-2942-9102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9633021$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9633021$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34855603$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Nathan, Viswam</creatorcontrib><creatorcontrib>Kuang, Jilong</creatorcontrib><creatorcontrib>Kim, Jacob</creatorcontrib><creatorcontrib>Avram, Robert</creatorcontrib><creatorcontrib>Olgin, Jeffrey</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</description><subject>AF burden</subject><subject>Algorithms</subject><subject>atrial fibrillation (AF)</subject><subject>Atrial Fibrillation - diagnosis</subject><subject>Cardiac arrhythmia</subject><subject>Complications</subject><subject>digital health</subject><subject>Electrocardiography</subject><subject>Fibrillation</subject><subject>Heart</subject><subject>Humans</subject><subject>Image color analysis</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic</subject><subject>Photoplethysmography</subject><subject>photoplethysmography (PPG)</subject><subject>Sensitivity</subject><subject>Smartwatches</subject><subject>Watches</subject><subject>wearable</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><subject>World population</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNptkM9LwzAUx4Mobsz9ASJIwYuXzpcfjclxm5ubDLw4PJY0fYWOrp1JK_jfm7nNg5hLHi-f9-XlQ8g1hRGloB9eJovliAGjI0451UqckT6jUsWMgTo_1VSLHhl6v4FwVGhpeUl6XKgkkcD7ZD1uXWmqaF5mrqwq05ZNHT1hi_anMnUe_UdMOpdjHc18W24Pnc_SRO9onMkq9FfkojCVx-HxHpD1fPY2XcSr1-fldLyKLRe6jW2SYK4eEaixojBcCCsLZhnLKag8UQCSg7SFRCgEp1QayJhVYIXQmVaMD8j9IXfnmo8OfZtuS28xbFlj0_mUSZCaMy1EQO_-oJumc3XYLlASaKKUUIGiB8q6xnuHRbpz4YfuK6WQ7rWne-3pXnt61B5mbo_JXbbF_HfiJDkANwegRMTfZy05DzH8G08EhJI</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Zhu, Li</creator><creator>Nathan, Viswam</creator><creator>Kuang, Jilong</creator><creator>Kim, Jacob</creator><creator>Avram, Robert</creator><creator>Olgin, Jeffrey</creator><creator>Gao, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8490-0270</orcidid><orcidid>https://orcid.org/0000-0003-0767-7471</orcidid><orcidid>https://orcid.org/0000-0003-2942-9102</orcidid></search><sort><creationdate>20220501</creationdate><title>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</title><author>Zhu, Li ; Nathan, Viswam ; Kuang, Jilong ; Kim, Jacob ; Avram, Robert ; Olgin, Jeffrey ; Gao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-c55ed87e01ac4fa344c6f2c22d108d58006306cf6e0f43116a0b2c80c449b9823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AF burden</topic><topic>Algorithms</topic><topic>atrial fibrillation (AF)</topic><topic>Atrial Fibrillation - diagnosis</topic><topic>Cardiac arrhythmia</topic><topic>Complications</topic><topic>digital health</topic><topic>Electrocardiography</topic><topic>Fibrillation</topic><topic>Heart</topic><topic>Humans</topic><topic>Image color analysis</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic</topic><topic>Photoplethysmography</topic><topic>photoplethysmography (PPG)</topic><topic>Sensitivity</topic><topic>Smartwatches</topic><topic>Watches</topic><topic>wearable</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><topic>World population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Nathan, Viswam</creatorcontrib><creatorcontrib>Kuang, Jilong</creatorcontrib><creatorcontrib>Kim, Jacob</creatorcontrib><creatorcontrib>Avram, Robert</creatorcontrib><creatorcontrib>Olgin, Jeffrey</creatorcontrib><creatorcontrib>Gao, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Li</au><au>Nathan, Viswam</au><au>Kuang, Jilong</au><au>Kim, Jacob</au><au>Avram, Robert</au><au>Olgin, Jeffrey</au><au>Gao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><spage>2063</spage><epage>2074</epage><pages>2063-2074</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Atrial Fibrillation (AF) is an important cardiac rhythm disorder, which if left untreated can lead to serious complications such as a stroke. AF can remain asymptomatic, and it can progressively worsen over time; it is thus a disorder that would benefit from detection and continuous monitoring with a wearable sensor. We develop an AF detection algorithm, deploy it on a smartwatch, and prospectively and comprehensively validate its performance on a real-world population that included patients diagnosed with AF. The algorithm showed a sensitivity of 87.8% and a specificity of 97.4% over every 5-minute segment of PPG evaluated. Furthermore, we introduce novel algorithm blocks and system designs to increase the time of coverage and monitor for AF even during periods of motion noise and other artifacts that would be encountered in daily-living scenarios. An average of 67.8% of the entire duration the patients wore the smartwatch produced a valid decision. Finally, we present the ability of our algorithm to function throughout the day and estimate the AF burden, a first-of-this-kind measure using a wearable sensor, showing 98% correlation with the ground truth and an average error of 6.2%.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34855603</pmid><doi>10.1109/JBHI.2021.3131984</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8490-0270</orcidid><orcidid>https://orcid.org/0000-0003-0767-7471</orcidid><orcidid>https://orcid.org/0000-0003-2942-9102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2022-05, Vol.26 (5), p.2063-2074
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_2660158848
source IEEE Electronic Library (IEL)
subjects AF burden
Algorithms
atrial fibrillation (AF)
Atrial Fibrillation - diagnosis
Cardiac arrhythmia
Complications
digital health
Electrocardiography
Fibrillation
Heart
Humans
Image color analysis
Monitoring
Monitoring, Physiologic
Photoplethysmography
photoplethysmography (PPG)
Sensitivity
Smartwatches
Watches
wearable
Wearable computers
Wearable Electronic Devices
Wearable technology
World population
title Atrial Fibrillation Detection and Atrial Fibrillation Burden Estimation via Wearables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atrial%20Fibrillation%20Detection%20and%20Atrial%20Fibrillation%20Burden%20Estimation%20via%20Wearables&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Zhu,%20Li&rft.date=2022-05-01&rft.volume=26&rft.issue=5&rft.spage=2063&rft.epage=2074&rft.pages=2063-2074&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2021.3131984&rft_dat=%3Cproquest_RIE%3E2606932944%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660158848&rft_id=info:pmid/34855603&rft_ieee_id=9633021&rfr_iscdi=true