Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers
•Present an artificial neural network method and its algorithm for solving the NTTM in thin gold films exposed to ultrashort-pulsed lasers.•Analyze the well-posedness of the NTTM and convergence of the neural network solution to the analytical solution.•Predict the electron and lattice temperatures...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2022-07, Vol.190, p.122791, Article 122791 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122791 |
container_title | International journal of heat and mass transfer |
container_volume | 190 |
creator | Bora, Aniruddha Dai, Weizhong Wilson, Joshua P. Boyt, Jacob C. Sobolev, Sergey L. |
description | •Present an artificial neural network method and its algorithm for solving the NTTM in thin gold films exposed to ultrashort-pulsed lasers.•Analyze the well-posedness of the NTTM and convergence of the neural network solution to the analytical solution.•Predict the electron and lattice temperatures in gold films exposed to ultrashort-pulsed lasers.
Recently, we have presented an artificial neural network (ANN) method for solving the parabolic two-temperature heat conduction equations (PTTM) in double-layered thin films exposed to ultrashort-pulsed lasers. In this article, we extend this study and develop an ANN method for the nonlocal (or weakly nonlocal) two-temperature model (NTTM), which takes into account both time and space nonlocal effects when the relaxation time becomes more effective such as in low temperature and when the characteristic length scale becomes comparable with the mean free path of heat carriers such as in nano systems under femtosecond laser irradiation where the PTTM may not be suitable. We analyze the well-posedness of the NTTM and the convergence of the ANN solution to the analytical solution. The ANN method is finally used to predict the electron and lattice temperatures in nanoscale gold films when exposed to ultrashort-pulsed lasers. As compared with the experimental data, the NTTM-based ANN method gives more accurate solutions than the PTTM-based ANN method. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2022.122791 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2660129085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931022002733</els_id><sourcerecordid>2660129085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-d4f995581e2256a0fbdb4b9d1a2836847296545558e59882b07cb88ce29946f43</originalsourceid><addsrcrecordid>eNqNkMtu3SAQhlGVSDk5yTsgddONT4HjC-xaRUkvitpNukYYj3NwbcYBnMsL9LmLdbLLJis0zKdvZn5CPnG244zXn4edGw5g0mRiTMH42EPYCSbEjgvRKP6BbLhsVCG4VCdkwxhvCrXn7IycxzisJSvrDfn3C5ZgRuohPWH4SydIB-xoj4FGHB-dv6ce_Yg2M5koEkwzBJOWANQbjzE3gK6LUIu-W2xy6Knz9B7HrHHjFCk8zxihownpMuZd4wFDKuZlXD9HEyHEC3Lam1xfvr5b8ufm-u7qe3H7-9uPq6-3hd03LBVd2StVVZKDEFVtWN92bdmqjhsh97UsG6HqqqwyAZWSUrSssa2UFoRSZd2X-y35ePTOAR8WiEkPuASfR2pR14wLxWSVqS9HygaMMUCv5-AmE140Z3pNXw_6bfp6TV8f08-Kn0cF5GseXe5G68Bb6FwAm3SH7v2y_4YfnVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2660129085</pqid></control><display><type>article</type><title>Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Bora, Aniruddha ; Dai, Weizhong ; Wilson, Joshua P. ; Boyt, Jacob C. ; Sobolev, Sergey L.</creator><creatorcontrib>Bora, Aniruddha ; Dai, Weizhong ; Wilson, Joshua P. ; Boyt, Jacob C. ; Sobolev, Sergey L.</creatorcontrib><description>•Present an artificial neural network method and its algorithm for solving the NTTM in thin gold films exposed to ultrashort-pulsed lasers.•Analyze the well-posedness of the NTTM and convergence of the neural network solution to the analytical solution.•Predict the electron and lattice temperatures in gold films exposed to ultrashort-pulsed lasers.
Recently, we have presented an artificial neural network (ANN) method for solving the parabolic two-temperature heat conduction equations (PTTM) in double-layered thin films exposed to ultrashort-pulsed lasers. In this article, we extend this study and develop an ANN method for the nonlocal (or weakly nonlocal) two-temperature model (NTTM), which takes into account both time and space nonlocal effects when the relaxation time becomes more effective such as in low temperature and when the characteristic length scale becomes comparable with the mean free path of heat carriers such as in nano systems under femtosecond laser irradiation where the PTTM may not be suitable. We analyze the well-posedness of the NTTM and the convergence of the ANN solution to the analytical solution. The ANN method is finally used to predict the electron and lattice temperatures in nanoscale gold films when exposed to ultrashort-pulsed lasers. As compared with the experimental data, the NTTM-based ANN method gives more accurate solutions than the PTTM-based ANN method.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2022.122791</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Artificial neural network method ; Artificial neural networks ; Conduction heating ; Conductive heat transfer ; Convergence ; Exact solutions ; Exposure ; Femtosecond pulsed lasers ; Gold ; Heat ; Lasers ; Low temperature ; Nanoscale heat conduction ; Neural networks ; Pulsed lasers ; Relaxation time ; Thin film ; Thin films ; Ultrashort-pulsed laser heating</subject><ispartof>International journal of heat and mass transfer, 2022-07, Vol.190, p.122791, Article 122791</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-d4f995581e2256a0fbdb4b9d1a2836847296545558e59882b07cb88ce29946f43</citedby><cites>FETCH-LOGICAL-c370t-d4f995581e2256a0fbdb4b9d1a2836847296545558e59882b07cb88ce29946f43</cites><orcidid>0000-0001-7417-7544 ; 0000-0001-8015-9924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122791$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bora, Aniruddha</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><creatorcontrib>Wilson, Joshua P.</creatorcontrib><creatorcontrib>Boyt, Jacob C.</creatorcontrib><creatorcontrib>Sobolev, Sergey L.</creatorcontrib><title>Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers</title><title>International journal of heat and mass transfer</title><description>•Present an artificial neural network method and its algorithm for solving the NTTM in thin gold films exposed to ultrashort-pulsed lasers.•Analyze the well-posedness of the NTTM and convergence of the neural network solution to the analytical solution.•Predict the electron and lattice temperatures in gold films exposed to ultrashort-pulsed lasers.
Recently, we have presented an artificial neural network (ANN) method for solving the parabolic two-temperature heat conduction equations (PTTM) in double-layered thin films exposed to ultrashort-pulsed lasers. In this article, we extend this study and develop an ANN method for the nonlocal (or weakly nonlocal) two-temperature model (NTTM), which takes into account both time and space nonlocal effects when the relaxation time becomes more effective such as in low temperature and when the characteristic length scale becomes comparable with the mean free path of heat carriers such as in nano systems under femtosecond laser irradiation where the PTTM may not be suitable. We analyze the well-posedness of the NTTM and the convergence of the ANN solution to the analytical solution. The ANN method is finally used to predict the electron and lattice temperatures in nanoscale gold films when exposed to ultrashort-pulsed lasers. As compared with the experimental data, the NTTM-based ANN method gives more accurate solutions than the PTTM-based ANN method.</description><subject>Artificial neural network method</subject><subject>Artificial neural networks</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Convergence</subject><subject>Exact solutions</subject><subject>Exposure</subject><subject>Femtosecond pulsed lasers</subject><subject>Gold</subject><subject>Heat</subject><subject>Lasers</subject><subject>Low temperature</subject><subject>Nanoscale heat conduction</subject><subject>Neural networks</subject><subject>Pulsed lasers</subject><subject>Relaxation time</subject><subject>Thin film</subject><subject>Thin films</subject><subject>Ultrashort-pulsed laser heating</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkMtu3SAQhlGVSDk5yTsgddONT4HjC-xaRUkvitpNukYYj3NwbcYBnMsL9LmLdbLLJis0zKdvZn5CPnG244zXn4edGw5g0mRiTMH42EPYCSbEjgvRKP6BbLhsVCG4VCdkwxhvCrXn7IycxzisJSvrDfn3C5ZgRuohPWH4SydIB-xoj4FGHB-dv6ce_Yg2M5koEkwzBJOWANQbjzE3gK6LUIu-W2xy6Knz9B7HrHHjFCk8zxihownpMuZd4wFDKuZlXD9HEyHEC3Lam1xfvr5b8ufm-u7qe3H7-9uPq6-3hd03LBVd2StVVZKDEFVtWN92bdmqjhsh97UsG6HqqqwyAZWSUrSssa2UFoRSZd2X-y35ePTOAR8WiEkPuASfR2pR14wLxWSVqS9HygaMMUCv5-AmE140Z3pNXw_6bfp6TV8f08-Kn0cF5GseXe5G68Bb6FwAm3SH7v2y_4YfnVs</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Bora, Aniruddha</creator><creator>Dai, Weizhong</creator><creator>Wilson, Joshua P.</creator><creator>Boyt, Jacob C.</creator><creator>Sobolev, Sergey L.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7417-7544</orcidid><orcidid>https://orcid.org/0000-0001-8015-9924</orcidid></search><sort><creationdate>202207</creationdate><title>Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers</title><author>Bora, Aniruddha ; Dai, Weizhong ; Wilson, Joshua P. ; Boyt, Jacob C. ; Sobolev, Sergey L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-d4f995581e2256a0fbdb4b9d1a2836847296545558e59882b07cb88ce29946f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural network method</topic><topic>Artificial neural networks</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Convergence</topic><topic>Exact solutions</topic><topic>Exposure</topic><topic>Femtosecond pulsed lasers</topic><topic>Gold</topic><topic>Heat</topic><topic>Lasers</topic><topic>Low temperature</topic><topic>Nanoscale heat conduction</topic><topic>Neural networks</topic><topic>Pulsed lasers</topic><topic>Relaxation time</topic><topic>Thin film</topic><topic>Thin films</topic><topic>Ultrashort-pulsed laser heating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bora, Aniruddha</creatorcontrib><creatorcontrib>Dai, Weizhong</creatorcontrib><creatorcontrib>Wilson, Joshua P.</creatorcontrib><creatorcontrib>Boyt, Jacob C.</creatorcontrib><creatorcontrib>Sobolev, Sergey L.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bora, Aniruddha</au><au>Dai, Weizhong</au><au>Wilson, Joshua P.</au><au>Boyt, Jacob C.</au><au>Sobolev, Sergey L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-07</date><risdate>2022</risdate><volume>190</volume><spage>122791</spage><pages>122791-</pages><artnum>122791</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Present an artificial neural network method and its algorithm for solving the NTTM in thin gold films exposed to ultrashort-pulsed lasers.•Analyze the well-posedness of the NTTM and convergence of the neural network solution to the analytical solution.•Predict the electron and lattice temperatures in gold films exposed to ultrashort-pulsed lasers.
Recently, we have presented an artificial neural network (ANN) method for solving the parabolic two-temperature heat conduction equations (PTTM) in double-layered thin films exposed to ultrashort-pulsed lasers. In this article, we extend this study and develop an ANN method for the nonlocal (or weakly nonlocal) two-temperature model (NTTM), which takes into account both time and space nonlocal effects when the relaxation time becomes more effective such as in low temperature and when the characteristic length scale becomes comparable with the mean free path of heat carriers such as in nano systems under femtosecond laser irradiation where the PTTM may not be suitable. We analyze the well-posedness of the NTTM and the convergence of the ANN solution to the analytical solution. The ANN method is finally used to predict the electron and lattice temperatures in nanoscale gold films when exposed to ultrashort-pulsed lasers. As compared with the experimental data, the NTTM-based ANN method gives more accurate solutions than the PTTM-based ANN method.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2022.122791</doi><orcidid>https://orcid.org/0000-0001-7417-7544</orcidid><orcidid>https://orcid.org/0000-0001-8015-9924</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2022-07, Vol.190, p.122791, Article 122791 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2660129085 |
source | Access via ScienceDirect (Elsevier) |
subjects | Artificial neural network method Artificial neural networks Conduction heating Conductive heat transfer Convergence Exact solutions Exposure Femtosecond pulsed lasers Gold Heat Lasers Low temperature Nanoscale heat conduction Neural networks Pulsed lasers Relaxation time Thin film Thin films Ultrashort-pulsed laser heating |
title | Neural network method for solving nonlocal two-temperature nanoscale heat conduction in gold films exposed to ultrashort-pulsed lasers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20method%20for%20solving%20nonlocal%20two-temperature%20nanoscale%20heat%20conduction%20in%20gold%20films%20exposed%20to%20ultrashort-pulsed%20lasers&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Bora,%20Aniruddha&rft.date=2022-07&rft.volume=190&rft.spage=122791&rft.pages=122791-&rft.artnum=122791&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2022.122791&rft_dat=%3Cproquest_cross%3E2660129085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2660129085&rft_id=info:pmid/&rft_els_id=S0017931022002733&rfr_iscdi=true |