Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells
In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic sol...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2022-05, Vol.10 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 10 |
creator | Janjua, Muhammad Ramzan Saeed Ashraf Irfan, Ahmad Hussien, Mohamed Ali, Muhammad Saqib, Muhammad Sulaman, Muhammad |
description | In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease.
Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE > 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors. |
doi_str_mv | 10.1002/ente.202200019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659637436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659637436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</originalsourceid><addsrcrecordid>eNqFkM1OAjEURhujiUTZum7ierDTv5kuEUFNQBbg1qbO3OKQ0mILMex8BJ_RJ3EIBpeu7pfc893kHoSuctLLCaE34DfQo4RSQkiuTlCH5opnnCp5esxleY66KS33CBFMENZBLxNTvTUevj-_xmCib_wC971xu9QkHCyerYxz7XISHFRbB_gu-BATtiHi0dY5iOAB35oENZ7GhfFNhWfBmYgH4Fy6RGfWuATd33mBnkfD-eAhG0_vHwf9cVaxvFCZUTyHklglbMn5q2TAKgmSmppYLklZGimMqC3hBRMKClMz4NZIaiVnleDsAl0f7q5jeN9C2uhl2Mb2j6SpFEqygjPZUr0DVcWQUgSr17FZmbjTOdF7jXqvUR81tgV1KHw0Dnb_0Hr4NB_-dX8AhRt3zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659637436</pqid></control><display><type>article</type><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><source>Access via Wiley Online Library</source><creator>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</creator><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</creatorcontrib><description>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease.
Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE > 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202200019</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Energy conversion efficiency ; Machine learning ; Materials selection ; organic solar cells ; Photovoltaic cells ; random forest ; small-molecule donors ; Solar cells ; support vector machine</subject><ispartof>Energy technology (Weinheim, Germany), 2022-05, Vol.10 (5), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</citedby><cites>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</cites><orcidid>0000-0003-0702-653X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202200019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202200019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf</creatorcontrib><creatorcontrib>Irfan, Ahmad</creatorcontrib><creatorcontrib>Hussien, Mohamed</creatorcontrib><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><creatorcontrib>Sulaman, Muhammad</creatorcontrib><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><title>Energy technology (Weinheim, Germany)</title><description>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease.
Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE > 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</description><subject>Energy conversion efficiency</subject><subject>Machine learning</subject><subject>Materials selection</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>random forest</subject><subject>small-molecule donors</subject><subject>Solar cells</subject><subject>support vector machine</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEURhujiUTZum7ierDTv5kuEUFNQBbg1qbO3OKQ0mILMex8BJ_RJ3EIBpeu7pfc893kHoSuctLLCaE34DfQo4RSQkiuTlCH5opnnCp5esxleY66KS33CBFMENZBLxNTvTUevj-_xmCib_wC971xu9QkHCyerYxz7XISHFRbB_gu-BATtiHi0dY5iOAB35oENZ7GhfFNhWfBmYgH4Fy6RGfWuATd33mBnkfD-eAhG0_vHwf9cVaxvFCZUTyHklglbMn5q2TAKgmSmppYLklZGimMqC3hBRMKClMz4NZIaiVnleDsAl0f7q5jeN9C2uhl2Mb2j6SpFEqygjPZUr0DVcWQUgSr17FZmbjTOdF7jXqvUR81tgV1KHw0Dnb_0Hr4NB_-dX8AhRt3zA</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Janjua, Muhammad Ramzan Saeed Ashraf</creator><creator>Irfan, Ahmad</creator><creator>Hussien, Mohamed</creator><creator>Ali, Muhammad</creator><creator>Saqib, Muhammad</creator><creator>Sulaman, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0702-653X</orcidid></search><sort><creationdate>202205</creationdate><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><author>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy conversion efficiency</topic><topic>Machine learning</topic><topic>Materials selection</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>random forest</topic><topic>small-molecule donors</topic><topic>Solar cells</topic><topic>support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf</creatorcontrib><creatorcontrib>Irfan, Ahmad</creatorcontrib><creatorcontrib>Hussien, Mohamed</creatorcontrib><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><creatorcontrib>Sulaman, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janjua, Muhammad Ramzan Saeed Ashraf</au><au>Irfan, Ahmad</au><au>Hussien, Mohamed</au><au>Ali, Muhammad</au><au>Saqib, Muhammad</au><au>Sulaman, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease.
Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE > 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202200019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0702-653X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2022-05, Vol.10 (5), p.n/a |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2659637436 |
source | Access via Wiley Online Library |
subjects | Energy conversion efficiency Machine learning Materials selection organic solar cells Photovoltaic cells random forest small-molecule donors Solar cells support vector machine |
title | Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning%20Analysis%20of%20Small%E2%80%90Molecule%20Donors%20for%20Fullerene%20Based%20Organic%20Solar%20Cells&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Janjua,%20Muhammad%20Ramzan%20Saeed%20Ashraf&rft.date=2022-05&rft.volume=10&rft.issue=5&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202200019&rft_dat=%3Cproquest_cross%3E2659637436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659637436&rft_id=info:pmid/&rfr_iscdi=true |