Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells

In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic sol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2022-05, Vol.10 (5), p.n/a
Hauptverfasser: Janjua, Muhammad Ramzan Saeed Ashraf, Irfan, Ahmad, Hussien, Mohamed, Ali, Muhammad, Saqib, Muhammad, Sulaman, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 10
creator Janjua, Muhammad Ramzan Saeed Ashraf
Irfan, Ahmad
Hussien, Mohamed
Ali, Muhammad
Saqib, Muhammad
Sulaman, Muhammad
description In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE > 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease. Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE > 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.
doi_str_mv 10.1002/ente.202200019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659637436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659637436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</originalsourceid><addsrcrecordid>eNqFkM1OAjEURhujiUTZum7ierDTv5kuEUFNQBbg1qbO3OKQ0mILMex8BJ_RJ3EIBpeu7pfc893kHoSuctLLCaE34DfQo4RSQkiuTlCH5opnnCp5esxleY66KS33CBFMENZBLxNTvTUevj-_xmCib_wC971xu9QkHCyerYxz7XISHFRbB_gu-BATtiHi0dY5iOAB35oENZ7GhfFNhWfBmYgH4Fy6RGfWuATd33mBnkfD-eAhG0_vHwf9cVaxvFCZUTyHklglbMn5q2TAKgmSmppYLklZGimMqC3hBRMKClMz4NZIaiVnleDsAl0f7q5jeN9C2uhl2Mb2j6SpFEqygjPZUr0DVcWQUgSr17FZmbjTOdF7jXqvUR81tgV1KHw0Dnb_0Hr4NB_-dX8AhRt3zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659637436</pqid></control><display><type>article</type><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><source>Access via Wiley Online Library</source><creator>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</creator><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</creatorcontrib><description>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE &gt; 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease. Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE &gt; 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202200019</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Energy conversion efficiency ; Machine learning ; Materials selection ; organic solar cells ; Photovoltaic cells ; random forest ; small-molecule donors ; Solar cells ; support vector machine</subject><ispartof>Energy technology (Weinheim, Germany), 2022-05, Vol.10 (5), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</citedby><cites>FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</cites><orcidid>0000-0003-0702-653X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.202200019$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.202200019$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf</creatorcontrib><creatorcontrib>Irfan, Ahmad</creatorcontrib><creatorcontrib>Hussien, Mohamed</creatorcontrib><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><creatorcontrib>Sulaman, Muhammad</creatorcontrib><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><title>Energy technology (Weinheim, Germany)</title><description>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE &gt; 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease. Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE &gt; 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</description><subject>Energy conversion efficiency</subject><subject>Machine learning</subject><subject>Materials selection</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>random forest</subject><subject>small-molecule donors</subject><subject>Solar cells</subject><subject>support vector machine</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEURhujiUTZum7ierDTv5kuEUFNQBbg1qbO3OKQ0mILMex8BJ_RJ3EIBpeu7pfc893kHoSuctLLCaE34DfQo4RSQkiuTlCH5opnnCp5esxleY66KS33CBFMENZBLxNTvTUevj-_xmCib_wC971xu9QkHCyerYxz7XISHFRbB_gu-BATtiHi0dY5iOAB35oENZ7GhfFNhWfBmYgH4Fy6RGfWuATd33mBnkfD-eAhG0_vHwf9cVaxvFCZUTyHklglbMn5q2TAKgmSmppYLklZGimMqC3hBRMKClMz4NZIaiVnleDsAl0f7q5jeN9C2uhl2Mb2j6SpFEqygjPZUr0DVcWQUgSr17FZmbjTOdF7jXqvUR81tgV1KHw0Dnb_0Hr4NB_-dX8AhRt3zA</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Janjua, Muhammad Ramzan Saeed Ashraf</creator><creator>Irfan, Ahmad</creator><creator>Hussien, Mohamed</creator><creator>Ali, Muhammad</creator><creator>Saqib, Muhammad</creator><creator>Sulaman, Muhammad</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0702-653X</orcidid></search><sort><creationdate>202205</creationdate><title>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</title><author>Janjua, Muhammad Ramzan Saeed Ashraf ; Irfan, Ahmad ; Hussien, Mohamed ; Ali, Muhammad ; Saqib, Muhammad ; Sulaman, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-a941e80f95f844b63e3c6e62ad0f46088a65a5df047359e7ad3e4fa62f643c543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Energy conversion efficiency</topic><topic>Machine learning</topic><topic>Materials selection</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>random forest</topic><topic>small-molecule donors</topic><topic>Solar cells</topic><topic>support vector machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janjua, Muhammad Ramzan Saeed Ashraf</creatorcontrib><creatorcontrib>Irfan, Ahmad</creatorcontrib><creatorcontrib>Hussien, Mohamed</creatorcontrib><creatorcontrib>Ali, Muhammad</creatorcontrib><creatorcontrib>Saqib, Muhammad</creatorcontrib><creatorcontrib>Sulaman, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janjua, Muhammad Ramzan Saeed Ashraf</au><au>Irfan, Ahmad</au><au>Hussien, Mohamed</au><au>Ali, Muhammad</au><au>Saqib, Muhammad</au><au>Sulaman, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2022-05</date><risdate>2022</risdate><volume>10</volume><issue>5</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>In recent years, development in organic solar cells speeds up and performance continuously increases. From the last few years, machine learning gains fame among scientists who are researching on organic solar cells. Herein, machine learning is used to screen the small‐molecule donors for organic solar cells. Molecular descriptors are used as input to train machine models. A variety of machine‐learning models are tested to find the suitable one. Random forest model shows best predictive capability (Pearson's coefficient = 0.93). New small‐molecule donors are also designed from easily synthesizable building units. Their power conversion efficiencies (PCEs) are predicted. Potential candidates with PCE &gt; 11% are selected. The approach presented herein helps to select the efficient materials in short time with ease. Machine‐learning analysis is performed to identify descriptors that influence the performance of OSCs. The power conversion efficiencies (PCEs) are predicted using a trained machine‐learning model and top five candidates with PCE &gt; 11% are selected. Machine‐learning requires marginal computational cost to assist the experimentalists to synthesize efficient small‐molecule donors.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.202200019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0702-653X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2022-05, Vol.10 (5), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2659637436
source Access via Wiley Online Library
subjects Energy conversion efficiency
Machine learning
Materials selection
organic solar cells
Photovoltaic cells
random forest
small-molecule donors
Solar cells
support vector machine
title Machine‐Learning Analysis of Small‐Molecule Donors for Fullerene Based Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%E2%80%90Learning%20Analysis%20of%20Small%E2%80%90Molecule%20Donors%20for%20Fullerene%20Based%20Organic%20Solar%20Cells&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Janjua,%20Muhammad%20Ramzan%20Saeed%20Ashraf&rft.date=2022-05&rft.volume=10&rft.issue=5&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202200019&rft_dat=%3Cproquest_cross%3E2659637436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659637436&rft_id=info:pmid/&rfr_iscdi=true