Locally active globally stable dynamical systems: Theory, learning, and experiments
State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2022-03, Vol.41 (3), p.312-347 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | 3 |
container_start_page | 312 |
container_title | The International journal of robotics research |
container_volume | 41 |
creator | Figueroa, Nadia Billard, Aude |
description | State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots. |
doi_str_mv | 10.1177/02783649211030952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659558137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_02783649211030952</sage_id><sourcerecordid>2659558137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-9d0e5053bc14775bd621d96d31c17fa68a6fb4040ab339904abf432232c4a7863</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8LXps6s59Zb1L8goIH6znsJpuakiZxNxXz35tawYN4Gob5vTePR8glwhxR62tgOuVKGIYIHIxkR2SCWmDCUatjMtnfkz1wSs5i3AAAV2Am5GXZ5rauB2rzvvrwdF237nuPvXW1p8XQ2G01IjQOsffbeENXb74Nw4zW3oamatYzapuC-s_Oh2rrmz6ek5PS1tFf_Mwpeb2_Wy0ek-Xzw9PidpnkHFmfmAK8BMldjkJr6QrFsDCq4JijLq1KrSqdAAHWcW4MCOtKwRnjLBdWp4pPydXBtwvt-87HPtu0u9CMLzOmpJEyRa5HCg9UHtoYgy-zbsxpw5AhZPvusj_djZr5QRPt2v-6_i_4AhQtbbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659558137</pqid></control><display><type>article</type><title>Locally active globally stable dynamical systems: Theory, learning, and experiments</title><source>SAGE Complete A-Z List</source><creator>Figueroa, Nadia ; Billard, Aude</creator><creatorcontrib>Figueroa, Nadia ; Billard, Aude</creatorcontrib><description>State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/02783649211030952</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Convergence ; Dynamical systems ; Gaussian process ; Human motion ; Humanoid ; Machine learning ; Motion planning ; Optimization ; Perturbation ; Probabilistic models ; Robot dynamics ; Robotics ; Robots ; Stiffness ; Trajectories</subject><ispartof>The International journal of robotics research, 2022-03, Vol.41 (3), p.312-347</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-9d0e5053bc14775bd621d96d31c17fa68a6fb4040ab339904abf432232c4a7863</citedby><cites>FETCH-LOGICAL-c312t-9d0e5053bc14775bd621d96d31c17fa68a6fb4040ab339904abf432232c4a7863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/02783649211030952$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/02783649211030952$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Figueroa, Nadia</creatorcontrib><creatorcontrib>Billard, Aude</creatorcontrib><title>Locally active globally stable dynamical systems: Theory, learning, and experiments</title><title>The International journal of robotics research</title><description>State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.</description><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Gaussian process</subject><subject>Human motion</subject><subject>Humanoid</subject><subject>Machine learning</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Perturbation</subject><subject>Probabilistic models</subject><subject>Robot dynamics</subject><subject>Robotics</subject><subject>Robots</subject><subject>Stiffness</subject><subject>Trajectories</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFb_AG8LXps6s59Zb1L8goIH6znsJpuakiZxNxXz35tawYN4Gob5vTePR8glwhxR62tgOuVKGIYIHIxkR2SCWmDCUatjMtnfkz1wSs5i3AAAV2Am5GXZ5rauB2rzvvrwdF237nuPvXW1p8XQ2G01IjQOsffbeENXb74Nw4zW3oamatYzapuC-s_Oh2rrmz6ek5PS1tFf_Mwpeb2_Wy0ek-Xzw9PidpnkHFmfmAK8BMldjkJr6QrFsDCq4JijLq1KrSqdAAHWcW4MCOtKwRnjLBdWp4pPydXBtwvt-87HPtu0u9CMLzOmpJEyRa5HCg9UHtoYgy-zbsxpw5AhZPvusj_djZr5QRPt2v-6_i_4AhQtbbE</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Figueroa, Nadia</creator><creator>Billard, Aude</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202203</creationdate><title>Locally active globally stable dynamical systems: Theory, learning, and experiments</title><author>Figueroa, Nadia ; Billard, Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-9d0e5053bc14775bd621d96d31c17fa68a6fb4040ab339904abf432232c4a7863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Gaussian process</topic><topic>Human motion</topic><topic>Humanoid</topic><topic>Machine learning</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Perturbation</topic><topic>Probabilistic models</topic><topic>Robot dynamics</topic><topic>Robotics</topic><topic>Robots</topic><topic>Stiffness</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Figueroa, Nadia</creatorcontrib><creatorcontrib>Billard, Aude</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Figueroa, Nadia</au><au>Billard, Aude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally active globally stable dynamical systems: Theory, learning, and experiments</atitle><jtitle>The International journal of robotics research</jtitle><date>2022-03</date><risdate>2022</risdate><volume>41</volume><issue>3</issue><spage>312</spage><epage>347</epage><pages>312-347</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>State-dependent dynamical systems (DSs) offer adaptivity, reactivity, and robustness to perturbations in motion planning and physical human–robot interaction tasks. Learning DS-based motion plans from non-linear reference trajectories is an active research area in robotics. Most approaches focus on learning DSs that can (i) accurately mimic the demonstrated motion, while (ii) ensuring convergence to the target, i.e., they are globally asymptotically (or exponentially) stable. When subject to perturbations, a compliant robot guided with a DS will continue following the next integral curves of the DS towards the target. If the task requires the robot to track a specific reference trajectory, this approach will fail. To alleviate this shortcoming, we propose the locally active globally stable DS (LAGS-DS), a novel DS formulation that provides both global convergence and stiffness-like symmetric attraction behaviors around a reference trajectory in regions of the state space where trajectory tracking is important. This allows for a unified approach towards motion and impedance encoding in a single DS-based motion model, i.e., stiffness is embedded in the DS. To learn LAGS-DS from demonstrations we propose a learning strategy based on Bayesian non-parametric Gaussian mixture models, Gaussian processes, and a sequence of constrained optimization problems that ensure estimation of stable DS parameters via Lyapunov theory. We experimentally validated LAGS-DS on writing tasks with a KUKA LWR 4+ arm and on navigation and co-manipulation tasks with iCub humanoid robots.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/02783649211030952</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2022-03, Vol.41 (3), p.312-347 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2659558137 |
source | SAGE Complete A-Z List |
subjects | Convergence Dynamical systems Gaussian process Human motion Humanoid Machine learning Motion planning Optimization Perturbation Probabilistic models Robot dynamics Robotics Robots Stiffness Trajectories |
title | Locally active globally stable dynamical systems: Theory, learning, and experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20active%20globally%20stable%20dynamical%20systems:%20Theory,%20learning,%20and%20experiments&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Figueroa,%20Nadia&rft.date=2022-03&rft.volume=41&rft.issue=3&rft.spage=312&rft.epage=347&rft.pages=312-347&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/02783649211030952&rft_dat=%3Cproquest_cross%3E2659558137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659558137&rft_id=info:pmid/&rft_sage_id=10.1177_02783649211030952&rfr_iscdi=true |