Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s
Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (17), p.9998-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 17 |
container_start_page | 9998 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Brosz, Matthias Michelarakis, Nicholas Bunz, Uwe H. F Aponte-Santamaría, Camilo Gräter, Frauke |
description | Poly(
para
-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.
From fine to coarse: insights into the large-scale assembly of poly(
para
-phenylene ethynylene)s from coarse-grained molecular dynamics simulations. |
doi_str_mv | 10.1039/d1cp04237h |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2659492314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649585199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4GUK1Zdf7XKUOZ0w0YOeS5q9uo6urUl76H9vXOcET_lCPjxeviHknMItBa7ultTUIBiPVwdkSEXEQwUTcbjPcTQgJ86tAYBKyo_JgEtBmeRiSGYv2jZ5mQc8MJW2DsNPq_MSl0FWWYNBlmOxzUFdFd04rFdYdgWWGGCz6vp47U7JUaYLh2e7c0Q-Hmfv03m4eH16nt4vQsOBN2HGUhPrJUBk_B4ZM8wAy5RJOYCBONMMgUdMiFjLlMf-ERNjMAVgqCOeSj4i435ubauvFl2TbHJnsCh0iVXrEhYJJSeSKuXp1T-6rlpb-u28kkooxqnw6qZXxlbOWcyS2uYbbbuEQvJTbvJAp2_bcuceX-5GtukGl3v626YHFz2wzuxv_36HfwNyx3yF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659492314</pqid></control><display><type>article</type><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</creator><creatorcontrib>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</creatorcontrib><description>Poly(
para
-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.
From fine to coarse: insights into the large-scale assembly of poly(
para
-phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04237h</identifier><identifier>PMID: 35412534</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chain entanglement ; Entanglement ; Material properties ; Mixtures ; Optimization ; Polymers - chemistry ; Stiffness ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9998-11</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</citedby><cites>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</cites><orcidid>0000-0002-1452-1187 ; 0000-0003-2891-3381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35412534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brosz, Matthias</creatorcontrib><creatorcontrib>Michelarakis, Nicholas</creatorcontrib><creatorcontrib>Bunz, Uwe H. F</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Poly(
para
-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.
From fine to coarse: insights into the large-scale assembly of poly(
para
-phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</description><subject>Chain entanglement</subject><subject>Entanglement</subject><subject>Material properties</subject><subject>Mixtures</subject><subject>Optimization</subject><subject>Polymers - chemistry</subject><subject>Stiffness</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c9LwzAUB_AgipvTi3el4GUK1Zdf7XKUOZ0w0YOeS5q9uo6urUl76H9vXOcET_lCPjxeviHknMItBa7ultTUIBiPVwdkSEXEQwUTcbjPcTQgJ86tAYBKyo_JgEtBmeRiSGYv2jZ5mQc8MJW2DsNPq_MSl0FWWYNBlmOxzUFdFd04rFdYdgWWGGCz6vp47U7JUaYLh2e7c0Q-Hmfv03m4eH16nt4vQsOBN2HGUhPrJUBk_B4ZM8wAy5RJOYCBONMMgUdMiFjLlMf-ERNjMAVgqCOeSj4i435ubauvFl2TbHJnsCh0iVXrEhYJJSeSKuXp1T-6rlpb-u28kkooxqnw6qZXxlbOWcyS2uYbbbuEQvJTbvJAp2_bcuceX-5GtukGl3v626YHFz2wzuxv_36HfwNyx3yF</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Brosz, Matthias</creator><creator>Michelarakis, Nicholas</creator><creator>Bunz, Uwe H. F</creator><creator>Aponte-Santamaría, Camilo</creator><creator>Gräter, Frauke</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1452-1187</orcidid><orcidid>https://orcid.org/0000-0003-2891-3381</orcidid></search><sort><creationdate>20220504</creationdate><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><author>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chain entanglement</topic><topic>Entanglement</topic><topic>Material properties</topic><topic>Mixtures</topic><topic>Optimization</topic><topic>Polymers - chemistry</topic><topic>Stiffness</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brosz, Matthias</creatorcontrib><creatorcontrib>Michelarakis, Nicholas</creatorcontrib><creatorcontrib>Bunz, Uwe H. F</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brosz, Matthias</au><au>Michelarakis, Nicholas</au><au>Bunz, Uwe H. F</au><au>Aponte-Santamaría, Camilo</au><au>Gräter, Frauke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>24</volume><issue>17</issue><spage>9998</spage><epage>11</epage><pages>9998-11</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Poly(
para
-phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force.
From fine to coarse: insights into the large-scale assembly of poly(
para
-phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35412534</pmid><doi>10.1039/d1cp04237h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1452-1187</orcidid><orcidid>https://orcid.org/0000-0003-2891-3381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9998-11 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_journals_2659492314 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chain entanglement Entanglement Material properties Mixtures Optimization Polymers - chemistry Stiffness Thermodynamics |
title | Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martini%203%20coarse-grained%20force%20field%20for%20poly(-phenylene%20ethynylene)s&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Brosz,%20Matthias&rft.date=2022-05-04&rft.volume=24&rft.issue=17&rft.spage=9998&rft.epage=11&rft.pages=9998-11&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04237h&rft_dat=%3Cproquest_pubme%3E2649585199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659492314&rft_id=info:pmid/35412534&rfr_iscdi=true |