Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s

Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2022-05, Vol.24 (17), p.9998-11
Hauptverfasser: Brosz, Matthias, Michelarakis, Nicholas, Bunz, Uwe H. F, Aponte-Santamaría, Camilo, Gräter, Frauke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 17
container_start_page 9998
container_title Physical chemistry chemical physics : PCCP
container_volume 24
creator Brosz, Matthias
Michelarakis, Nicholas
Bunz, Uwe H. F
Aponte-Santamaría, Camilo
Gräter, Frauke
description Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force. From fine to coarse: insights into the large-scale assembly of poly( para -phenylene ethynylene)s from coarse-grained molecular dynamics simulations.
doi_str_mv 10.1039/d1cp04237h
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2659492314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2649585199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4GUK1Zdf7XKUOZ0w0YOeS5q9uo6urUl76H9vXOcET_lCPjxeviHknMItBa7ultTUIBiPVwdkSEXEQwUTcbjPcTQgJ86tAYBKyo_JgEtBmeRiSGYv2jZ5mQc8MJW2DsNPq_MSl0FWWYNBlmOxzUFdFd04rFdYdgWWGGCz6vp47U7JUaYLh2e7c0Q-Hmfv03m4eH16nt4vQsOBN2HGUhPrJUBk_B4ZM8wAy5RJOYCBONMMgUdMiFjLlMf-ERNjMAVgqCOeSj4i435ubauvFl2TbHJnsCh0iVXrEhYJJSeSKuXp1T-6rlpb-u28kkooxqnw6qZXxlbOWcyS2uYbbbuEQvJTbvJAp2_bcuceX-5GtukGl3v626YHFz2wzuxv_36HfwNyx3yF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659492314</pqid></control><display><type>article</type><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</creator><creatorcontrib>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</creatorcontrib><description>Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force. From fine to coarse: insights into the large-scale assembly of poly( para -phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d1cp04237h</identifier><identifier>PMID: 35412534</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chain entanglement ; Entanglement ; Material properties ; Mixtures ; Optimization ; Polymers - chemistry ; Stiffness ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9998-11</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</citedby><cites>FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</cites><orcidid>0000-0002-1452-1187 ; 0000-0003-2891-3381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35412534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brosz, Matthias</creatorcontrib><creatorcontrib>Michelarakis, Nicholas</creatorcontrib><creatorcontrib>Bunz, Uwe H. F</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force. From fine to coarse: insights into the large-scale assembly of poly( para -phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</description><subject>Chain entanglement</subject><subject>Entanglement</subject><subject>Material properties</subject><subject>Mixtures</subject><subject>Optimization</subject><subject>Polymers - chemistry</subject><subject>Stiffness</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c9LwzAUB_AgipvTi3el4GUK1Zdf7XKUOZ0w0YOeS5q9uo6urUl76H9vXOcET_lCPjxeviHknMItBa7ultTUIBiPVwdkSEXEQwUTcbjPcTQgJ86tAYBKyo_JgEtBmeRiSGYv2jZ5mQc8MJW2DsNPq_MSl0FWWYNBlmOxzUFdFd04rFdYdgWWGGCz6vp47U7JUaYLh2e7c0Q-Hmfv03m4eH16nt4vQsOBN2HGUhPrJUBk_B4ZM8wAy5RJOYCBONMMgUdMiFjLlMf-ERNjMAVgqCOeSj4i435ubauvFl2TbHJnsCh0iVXrEhYJJSeSKuXp1T-6rlpb-u28kkooxqnw6qZXxlbOWcyS2uYbbbuEQvJTbvJAp2_bcuceX-5GtukGl3v626YHFz2wzuxv_36HfwNyx3yF</recordid><startdate>20220504</startdate><enddate>20220504</enddate><creator>Brosz, Matthias</creator><creator>Michelarakis, Nicholas</creator><creator>Bunz, Uwe H. F</creator><creator>Aponte-Santamaría, Camilo</creator><creator>Gräter, Frauke</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1452-1187</orcidid><orcidid>https://orcid.org/0000-0003-2891-3381</orcidid></search><sort><creationdate>20220504</creationdate><title>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</title><author>Brosz, Matthias ; Michelarakis, Nicholas ; Bunz, Uwe H. F ; Aponte-Santamaría, Camilo ; Gräter, Frauke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-f2bc7ad006c513f2c2c02f9cb300c07fa2e0362447a5b370848cceb002ea63b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chain entanglement</topic><topic>Entanglement</topic><topic>Material properties</topic><topic>Mixtures</topic><topic>Optimization</topic><topic>Polymers - chemistry</topic><topic>Stiffness</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brosz, Matthias</creatorcontrib><creatorcontrib>Michelarakis, Nicholas</creatorcontrib><creatorcontrib>Bunz, Uwe H. F</creatorcontrib><creatorcontrib>Aponte-Santamaría, Camilo</creatorcontrib><creatorcontrib>Gräter, Frauke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brosz, Matthias</au><au>Michelarakis, Nicholas</au><au>Bunz, Uwe H. F</au><au>Aponte-Santamaría, Camilo</au><au>Gräter, Frauke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2022-05-04</date><risdate>2022</risdate><volume>24</volume><issue>17</issue><spage>9998</spage><epage>11</epage><pages>9998-11</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Poly( para -phenylene ethynylene)s, or short PPEs, are a class of conjugated and semi-flexible polymers with a strongly delocalized π electron system and increased chain stiffness. Due to this, PPEs have a wide range of technological applications. Although the material properties of single-chains or mixtures of few PPE chains have been studied in detail, the properties of large assemblies remain to be fully explored. Here, we developed a coarse-grained model for PPEs with the Martini 3 force field to enable computational studies of PPEs in large-scale assembly. We used an optimization geometrical approach to take the shape of the π conjugated backbone into account and also applied an additional angular potential to tune the mechanical bending stiffness of the polymer. Our Martini 3 model reproduces key structural and thermodynamic observables of single PPE chains and mixtures, such as persistence length, density, packing and stacking. We show that chain entanglement increases with the expense of nematic ordering with growing PPE chain length. With the Martini 3 PPE model at hand, we are now able to cover large spatio-temporal scales and thereby to uncover key aspects for the structural organization of PPE bulk systems. The model is also predicted to be of high applicability to investigate out-of-equilibrium behavior of PPEs under mechanical force. From fine to coarse: insights into the large-scale assembly of poly( para -phenylene ethynylene)s from coarse-grained molecular dynamics simulations.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35412534</pmid><doi>10.1039/d1cp04237h</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1452-1187</orcidid><orcidid>https://orcid.org/0000-0003-2891-3381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2022-05, Vol.24 (17), p.9998-11
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_journals_2659492314
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chain entanglement
Entanglement
Material properties
Mixtures
Optimization
Polymers - chemistry
Stiffness
Thermodynamics
title Martini 3 coarse-grained force field for poly(-phenylene ethynylene)s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martini%203%20coarse-grained%20force%20field%20for%20poly(-phenylene%20ethynylene)s&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Brosz,%20Matthias&rft.date=2022-05-04&rft.volume=24&rft.issue=17&rft.spage=9998&rft.epage=11&rft.pages=9998-11&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d1cp04237h&rft_dat=%3Cproquest_pubme%3E2649585199%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659492314&rft_id=info:pmid/35412534&rfr_iscdi=true