A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation

This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2022-06, Vol.45 (9), p.5304-5320
Hauptverfasser: Hosseininia, Masoumeh, Heydari, Mohammad Hossein, Avazzadeh, Zakieh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5320
container_issue 9
container_start_page 5304
container_title Mathematical methods in the applied sciences
container_volume 45
creator Hosseininia, Masoumeh
Heydari, Mohammad Hossein
Avazzadeh, Zakieh
description This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.
doi_str_mv 10.1002/mma.8107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659434602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659434602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</originalsourceid><addsrcrecordid>eNp10D9OwzAUBnALgUQpSBzBEgtLiu04TjxW5a_UigGYI8d5JqnSJLUTqjIxcAAOxMZNOAluywiTn6yfnt73IXRKyYgSwi4WCzVKKIn30IASKQPKY7GPBoTGJOCM8kN05NycEJJQygbofYyLdWbLHKu2tY3SBQbXqawqXQE57tumxl0BePb1WXev328fU3iGOgeLTV_rrmxqh1WdY3b5B1mpF6igc9g03lu19arCD03WVPCCYdmrzdcxOjCqcnDy-w7R0_XV4-Q2mN7f3E3G00AzGcaB5BEnyhimBQ8Fo6EJ85xGkQmBZFKA1MoHjKVIwiz3Q6IzxmMOEgSXmYZwiM52e33SZe9zpvOmt_4ilzIRSR5yQZhX5zulbeOcBZO2tlwou04pSTcdp77jdNOxp8GOrsoK1v-6dDYbb_0PPxCB3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659434602</pqid></control><display><type>article</type><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><source>Wiley Online Library All Journals</source><creator>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creator><creatorcontrib>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creatorcontrib><description>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8107</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>fractional sobolev equation ; hybrid method ; Mathematical analysis ; Müntz‐Legender functions ; Müntz‐Legender wavelets</subject><ispartof>Mathematical methods in the applied sciences, 2022-06, Vol.45 (9), p.5304-5320</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</citedby><cites>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</cites><orcidid>0000-0003-2257-1798 ; 0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hosseininia, Masoumeh</creatorcontrib><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><title>Mathematical methods in the applied sciences</title><description>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</description><subject>fractional sobolev equation</subject><subject>hybrid method</subject><subject>Mathematical analysis</subject><subject>Müntz‐Legender functions</subject><subject>Müntz‐Legender wavelets</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10D9OwzAUBnALgUQpSBzBEgtLiu04TjxW5a_UigGYI8d5JqnSJLUTqjIxcAAOxMZNOAluywiTn6yfnt73IXRKyYgSwi4WCzVKKIn30IASKQPKY7GPBoTGJOCM8kN05NycEJJQygbofYyLdWbLHKu2tY3SBQbXqawqXQE57tumxl0BePb1WXev328fU3iGOgeLTV_rrmxqh1WdY3b5B1mpF6igc9g03lu19arCD03WVPCCYdmrzdcxOjCqcnDy-w7R0_XV4-Q2mN7f3E3G00AzGcaB5BEnyhimBQ8Fo6EJ85xGkQmBZFKA1MoHjKVIwiz3Q6IzxmMOEgSXmYZwiM52e33SZe9zpvOmt_4ilzIRSR5yQZhX5zulbeOcBZO2tlwou04pSTcdp77jdNOxp8GOrsoK1v-6dDYbb_0PPxCB3w</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Hosseininia, Masoumeh</creator><creator>Heydari, Mohammad Hossein</creator><creator>Avazzadeh, Zakieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>202206</creationdate><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><author>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fractional sobolev equation</topic><topic>hybrid method</topic><topic>Mathematical analysis</topic><topic>Müntz‐Legender functions</topic><topic>Müntz‐Legender wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseininia, Masoumeh</creatorcontrib><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseininia, Masoumeh</au><au>Heydari, Mohammad Hossein</au><au>Avazzadeh, Zakieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-06</date><risdate>2022</risdate><volume>45</volume><issue>9</issue><spage>5304</spage><epage>5320</epage><pages>5304-5320</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8107</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-06, Vol.45 (9), p.5304-5320
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2659434602
source Wiley Online Library All Journals
subjects fractional sobolev equation
hybrid method
Mathematical analysis
Müntz‐Legender functions
Müntz‐Legender wavelets
title A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20approach%20established%20upon%20the%20M%C3%BCntz%E2%80%90Legender%20functions%20and%202D%20M%C3%BCntz%E2%80%90Legender%20wavelets%20for%20fractional%20Sobolev%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hosseininia,%20Masoumeh&rft.date=2022-06&rft.volume=45&rft.issue=9&rft.spage=5304&rft.epage=5320&rft.pages=5304-5320&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8107&rft_dat=%3Cproquest_cross%3E2659434602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659434602&rft_id=info:pmid/&rfr_iscdi=true