A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation
This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the tim...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2022-06, Vol.45 (9), p.5304-5320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5320 |
---|---|
container_issue | 9 |
container_start_page | 5304 |
container_title | Mathematical methods in the applied sciences |
container_volume | 45 |
creator | Hosseininia, Masoumeh Heydari, Mohammad Hossein Avazzadeh, Zakieh |
description | This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method. |
doi_str_mv | 10.1002/mma.8107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659434602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659434602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</originalsourceid><addsrcrecordid>eNp10D9OwzAUBnALgUQpSBzBEgtLiu04TjxW5a_UigGYI8d5JqnSJLUTqjIxcAAOxMZNOAluywiTn6yfnt73IXRKyYgSwi4WCzVKKIn30IASKQPKY7GPBoTGJOCM8kN05NycEJJQygbofYyLdWbLHKu2tY3SBQbXqawqXQE57tumxl0BePb1WXev328fU3iGOgeLTV_rrmxqh1WdY3b5B1mpF6igc9g03lu19arCD03WVPCCYdmrzdcxOjCqcnDy-w7R0_XV4-Q2mN7f3E3G00AzGcaB5BEnyhimBQ8Fo6EJ85xGkQmBZFKA1MoHjKVIwiz3Q6IzxmMOEgSXmYZwiM52e33SZe9zpvOmt_4ilzIRSR5yQZhX5zulbeOcBZO2tlwou04pSTcdp77jdNOxp8GOrsoK1v-6dDYbb_0PPxCB3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659434602</pqid></control><display><type>article</type><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><source>Wiley Online Library All Journals</source><creator>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creator><creatorcontrib>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creatorcontrib><description>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8107</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>fractional sobolev equation ; hybrid method ; Mathematical analysis ; Müntz‐Legender functions ; Müntz‐Legender wavelets</subject><ispartof>Mathematical methods in the applied sciences, 2022-06, Vol.45 (9), p.5304-5320</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</citedby><cites>FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</cites><orcidid>0000-0003-2257-1798 ; 0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hosseininia, Masoumeh</creatorcontrib><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><title>Mathematical methods in the applied sciences</title><description>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</description><subject>fractional sobolev equation</subject><subject>hybrid method</subject><subject>Mathematical analysis</subject><subject>Müntz‐Legender functions</subject><subject>Müntz‐Legender wavelets</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10D9OwzAUBnALgUQpSBzBEgtLiu04TjxW5a_UigGYI8d5JqnSJLUTqjIxcAAOxMZNOAluywiTn6yfnt73IXRKyYgSwi4WCzVKKIn30IASKQPKY7GPBoTGJOCM8kN05NycEJJQygbofYyLdWbLHKu2tY3SBQbXqawqXQE57tumxl0BePb1WXev328fU3iGOgeLTV_rrmxqh1WdY3b5B1mpF6igc9g03lu19arCD03WVPCCYdmrzdcxOjCqcnDy-w7R0_XV4-Q2mN7f3E3G00AzGcaB5BEnyhimBQ8Fo6EJ85xGkQmBZFKA1MoHjKVIwiz3Q6IzxmMOEgSXmYZwiM52e33SZe9zpvOmt_4ilzIRSR5yQZhX5zulbeOcBZO2tlwou04pSTcdp77jdNOxp8GOrsoK1v-6dDYbb_0PPxCB3w</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Hosseininia, Masoumeh</creator><creator>Heydari, Mohammad Hossein</creator><creator>Avazzadeh, Zakieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>202206</creationdate><title>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</title><author>Hosseininia, Masoumeh ; Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-94540aff2c6436213f3dd155f3e0b96e9ca21479683bd1478cb2474e9e649bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>fractional sobolev equation</topic><topic>hybrid method</topic><topic>Mathematical analysis</topic><topic>Müntz‐Legender functions</topic><topic>Müntz‐Legender wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseininia, Masoumeh</creatorcontrib><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseininia, Masoumeh</au><au>Heydari, Mohammad Hossein</au><au>Avazzadeh, Zakieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-06</date><risdate>2022</risdate><volume>45</volume><issue>9</issue><spage>5304</spage><epage>5320</epage><pages>5304-5320</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This article proposes a hybrid technique for finding approximation solutions of the fractional 2D Sobolev equation. In the proposed approach, the Müntz‐Legender functions and Müntz‐Legender wavelets are, respectively, utilized to approximate the solution of the problem under consideration in the time and spatial directions. By implementing the presented technique, solving the 2D fractional Sobolev equation is converted into solving a system of algebraic equations. Three examples are solved to examine the validity of the proposed method.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8107</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2022-06, Vol.45 (9), p.5304-5320 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2659434602 |
source | Wiley Online Library All Journals |
subjects | fractional sobolev equation hybrid method Mathematical analysis Müntz‐Legender functions Müntz‐Legender wavelets |
title | A hybrid approach established upon the Müntz‐Legender functions and 2D Müntz‐Legender wavelets for fractional Sobolev equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20approach%20established%20upon%20the%20M%C3%BCntz%E2%80%90Legender%20functions%20and%202D%20M%C3%BCntz%E2%80%90Legender%20wavelets%20for%20fractional%20Sobolev%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hosseininia,%20Masoumeh&rft.date=2022-06&rft.volume=45&rft.issue=9&rft.spage=5304&rft.epage=5320&rft.pages=5304-5320&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8107&rft_dat=%3Cproquest_cross%3E2659434602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659434602&rft_id=info:pmid/&rfr_iscdi=true |