Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes
The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to l...
Gespeichert in:
Veröffentlicht in: | Journal of material cycles and waste management 2022-05, Vol.24 (3), p.1059-1071 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1071 |
---|---|
container_issue | 3 |
container_start_page | 1059 |
container_title | Journal of material cycles and waste management |
container_volume | 24 |
creator | Del Amo, J. Simón, D. Ramos, M. J. Rodríguez, J. F. De Lucas, A. Borreguero, A. M. |
description | The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to larger scales. With the goal of scaling-up the process from laboratory scale to pilot plant, geometric similarity criteria were applied together with dynamic similarity for laminar flow in agitated tank reactors. Hence, a pilot plant installation was designed with geometrically similar equipment to those used for lab scale, obtaining analogous results in terms of recovered polyol properties. Then, the basic design of a split-phase glycolysis industrial plant with a capacity for treating 270 Tm per year of flexible PU foams scraps was proposed. Finally, the economic feasibility of such recycling process was confirmed because of the obtention of a Net Present Value (NPV) of 1,464,555€, with an Internal Rate of Return (IRR) of 27.99%, and a payback time between 4 and 5 years. |
doi_str_mv | 10.1007/s10163-022-01379-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659396149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659396149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f2c59f2b622013921619d4c98e04e0cc0919c55a2bda98849da7c38cf25a4cd53</originalsourceid><addsrcrecordid>eNp9kLlOw0AQhi0EEiHwAlQrUS_s4WtLFHFJSBRAvdqMx7EjX-zYgjwBr80mRqKjmim-b44_ii6luJZCZDckhUw1F0pxIXVmuDmKFjKVkudKZcehj3XOY5Nkp9EZ0VYIZYTOFtH3K7gGCz4NzHUFQ-i7vq2BOSIkarEbmRsG3zuoWF-ysUJGQ1OPfKgcIds0O-ibHdXEAgRBYWXvD5hH2EFTd5u9Vzb4Va8bZEOgJ49j5ToMqGvZp6MR6Tw6KV1DePFbl9H7_d3b6pE_vzw8rW6fOehUj7xUkJhSrVOlwp9GhRdNEYPJUcQoAISRBpLEqXXhTJ7HpnAZ6BxKlbgYikQvo6t5bjj3Y0Ia7baffBdWWpUmRptUxiZQaqbA90QeSzv4unV-Z6Ww-8DtHLgNgdtD4HYv6VmiAHcb9H-j_7F-AC9thi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659396149</pqid></control><display><type>article</type><title>Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes</title><source>SpringerLink Journals - AutoHoldings</source><creator>Del Amo, J. ; Simón, D. ; Ramos, M. J. ; Rodríguez, J. F. ; De Lucas, A. ; Borreguero, A. M.</creator><creatorcontrib>Del Amo, J. ; Simón, D. ; Ramos, M. J. ; Rodríguez, J. F. ; De Lucas, A. ; Borreguero, A. M.</creatorcontrib><description>The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to larger scales. With the goal of scaling-up the process from laboratory scale to pilot plant, geometric similarity criteria were applied together with dynamic similarity for laminar flow in agitated tank reactors. Hence, a pilot plant installation was designed with geometrically similar equipment to those used for lab scale, obtaining analogous results in terms of recovered polyol properties. Then, the basic design of a split-phase glycolysis industrial plant with a capacity for treating 270 Tm per year of flexible PU foams scraps was proposed. Finally, the economic feasibility of such recycling process was confirmed because of the obtention of a Net Present Value (NPV) of 1,464,555€, with an Internal Rate of Return (IRR) of 27.99%, and a payback time between 4 and 5 years.</description><identifier>ISSN: 1438-4957</identifier><identifier>EISSN: 1611-8227</identifier><identifier>DOI: 10.1007/s10163-022-01379-9</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Civil Engineering ; Design ; Dynamic similarity ; Economics ; Engineering ; Environmental Management ; Foams ; Fourier transforms ; Glycerol ; Glycolysis ; Industrial plants ; Laboratories ; Laminar flow ; Molecular weight ; Original Article ; Pilot plants ; Polyurethane ; Polyurethane foam ; Pore size ; Reactors ; Recycling ; Waste Management/Waste Technology</subject><ispartof>Journal of material cycles and waste management, 2022-05, Vol.24 (3), p.1059-1071</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f2c59f2b622013921619d4c98e04e0cc0919c55a2bda98849da7c38cf25a4cd53</citedby><cites>FETCH-LOGICAL-c363t-f2c59f2b622013921619d4c98e04e0cc0919c55a2bda98849da7c38cf25a4cd53</cites><orcidid>0000-0001-9498-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10163-022-01379-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10163-022-01379-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Del Amo, J.</creatorcontrib><creatorcontrib>Simón, D.</creatorcontrib><creatorcontrib>Ramos, M. J.</creatorcontrib><creatorcontrib>Rodríguez, J. F.</creatorcontrib><creatorcontrib>De Lucas, A.</creatorcontrib><creatorcontrib>Borreguero, A. M.</creatorcontrib><title>Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes</title><title>Journal of material cycles and waste management</title><addtitle>J Mater Cycles Waste Manag</addtitle><description>The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to larger scales. With the goal of scaling-up the process from laboratory scale to pilot plant, geometric similarity criteria were applied together with dynamic similarity for laminar flow in agitated tank reactors. Hence, a pilot plant installation was designed with geometrically similar equipment to those used for lab scale, obtaining analogous results in terms of recovered polyol properties. Then, the basic design of a split-phase glycolysis industrial plant with a capacity for treating 270 Tm per year of flexible PU foams scraps was proposed. Finally, the economic feasibility of such recycling process was confirmed because of the obtention of a Net Present Value (NPV) of 1,464,555€, with an Internal Rate of Return (IRR) of 27.99%, and a payback time between 4 and 5 years.</description><subject>Civil Engineering</subject><subject>Design</subject><subject>Dynamic similarity</subject><subject>Economics</subject><subject>Engineering</subject><subject>Environmental Management</subject><subject>Foams</subject><subject>Fourier transforms</subject><subject>Glycerol</subject><subject>Glycolysis</subject><subject>Industrial plants</subject><subject>Laboratories</subject><subject>Laminar flow</subject><subject>Molecular weight</subject><subject>Original Article</subject><subject>Pilot plants</subject><subject>Polyurethane</subject><subject>Polyurethane foam</subject><subject>Pore size</subject><subject>Reactors</subject><subject>Recycling</subject><subject>Waste Management/Waste Technology</subject><issn>1438-4957</issn><issn>1611-8227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLlOw0AQhi0EEiHwAlQrUS_s4WtLFHFJSBRAvdqMx7EjX-zYgjwBr80mRqKjmim-b44_ii6luJZCZDckhUw1F0pxIXVmuDmKFjKVkudKZcehj3XOY5Nkp9EZ0VYIZYTOFtH3K7gGCz4NzHUFQ-i7vq2BOSIkarEbmRsG3zuoWF-ysUJGQ1OPfKgcIds0O-ibHdXEAgRBYWXvD5hH2EFTd5u9Vzb4Va8bZEOgJ49j5ToMqGvZp6MR6Tw6KV1DePFbl9H7_d3b6pE_vzw8rW6fOehUj7xUkJhSrVOlwp9GhRdNEYPJUcQoAISRBpLEqXXhTJ7HpnAZ6BxKlbgYikQvo6t5bjj3Y0Ia7baffBdWWpUmRptUxiZQaqbA90QeSzv4unV-Z6Ww-8DtHLgNgdtD4HYv6VmiAHcb9H-j_7F-AC9thi4</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Del Amo, J.</creator><creator>Simón, D.</creator><creator>Ramos, M. J.</creator><creator>Rodríguez, J. F.</creator><creator>De Lucas, A.</creator><creator>Borreguero, A. M.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9498-5987</orcidid></search><sort><creationdate>20220501</creationdate><title>Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes</title><author>Del Amo, J. ; Simón, D. ; Ramos, M. J. ; Rodríguez, J. F. ; De Lucas, A. ; Borreguero, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f2c59f2b622013921619d4c98e04e0cc0919c55a2bda98849da7c38cf25a4cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Civil Engineering</topic><topic>Design</topic><topic>Dynamic similarity</topic><topic>Economics</topic><topic>Engineering</topic><topic>Environmental Management</topic><topic>Foams</topic><topic>Fourier transforms</topic><topic>Glycerol</topic><topic>Glycolysis</topic><topic>Industrial plants</topic><topic>Laboratories</topic><topic>Laminar flow</topic><topic>Molecular weight</topic><topic>Original Article</topic><topic>Pilot plants</topic><topic>Polyurethane</topic><topic>Polyurethane foam</topic><topic>Pore size</topic><topic>Reactors</topic><topic>Recycling</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Del Amo, J.</creatorcontrib><creatorcontrib>Simón, D.</creatorcontrib><creatorcontrib>Ramos, M. J.</creatorcontrib><creatorcontrib>Rodríguez, J. F.</creatorcontrib><creatorcontrib>De Lucas, A.</creatorcontrib><creatorcontrib>Borreguero, A. M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of material cycles and waste management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Del Amo, J.</au><au>Simón, D.</au><au>Ramos, M. J.</au><au>Rodríguez, J. F.</au><au>De Lucas, A.</au><au>Borreguero, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes</atitle><jtitle>Journal of material cycles and waste management</jtitle><stitle>J Mater Cycles Waste Manag</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><spage>1059</spage><epage>1071</epage><pages>1059-1071</pages><issn>1438-4957</issn><eissn>1611-8227</eissn><abstract>The economic viability of the split-phase glycolysis process for the recycling of any kind of flexible polyurethane foam waste employing crude glycerol as cleavage agent has been demonstrated. First, experiments at pilot plant scale were carried out to check that the process can be extrapolated to larger scales. With the goal of scaling-up the process from laboratory scale to pilot plant, geometric similarity criteria were applied together with dynamic similarity for laminar flow in agitated tank reactors. Hence, a pilot plant installation was designed with geometrically similar equipment to those used for lab scale, obtaining analogous results in terms of recovered polyol properties. Then, the basic design of a split-phase glycolysis industrial plant with a capacity for treating 270 Tm per year of flexible PU foams scraps was proposed. Finally, the economic feasibility of such recycling process was confirmed because of the obtention of a Net Present Value (NPV) of 1,464,555€, with an Internal Rate of Return (IRR) of 27.99%, and a payback time between 4 and 5 years.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10163-022-01379-9</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9498-5987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-4957 |
ispartof | Journal of material cycles and waste management, 2022-05, Vol.24 (3), p.1059-1071 |
issn | 1438-4957 1611-8227 |
language | eng |
recordid | cdi_proquest_journals_2659396149 |
source | SpringerLink Journals - AutoHoldings |
subjects | Civil Engineering Design Dynamic similarity Economics Engineering Environmental Management Foams Fourier transforms Glycerol Glycolysis Industrial plants Laboratories Laminar flow Molecular weight Original Article Pilot plants Polyurethane Polyurethane foam Pore size Reactors Recycling Waste Management/Waste Technology |
title | Scaled-up and economic assessment approach of the split-phase glycolysis process for the recycling of flexible polyurethane foam wastes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaled-up%20and%20economic%20assessment%20approach%20of%20the%20split-phase%20glycolysis%20process%20for%20the%20recycling%20of%20flexible%20polyurethane%20foam%20wastes&rft.jtitle=Journal%20of%20material%20cycles%20and%20waste%20management&rft.au=Del%20Amo,%20J.&rft.date=2022-05-01&rft.volume=24&rft.issue=3&rft.spage=1059&rft.epage=1071&rft.pages=1059-1071&rft.issn=1438-4957&rft.eissn=1611-8227&rft_id=info:doi/10.1007/s10163-022-01379-9&rft_dat=%3Cproquest_cross%3E2659396149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659396149&rft_id=info:pmid/&rfr_iscdi=true |