Learning Mixed Strategies in Trajectory Games
In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction mod...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Peters, Lasse Fridovich-Keil, David Ferranti, Laura Stachniss, Cyrill Alonso-Mora, Javier Laine, rest |
description | In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag." |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2659395428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659395428</sourcerecordid><originalsourceid>FETCH-proquest_journals_26593954283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9UlNLMrLzEtX8M2sSE1RCC4pSixJTc9MLVbIzFMIKUrMSk0uyS-qVHBPzE0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzU0tjS1MTIwtj4lQBAK2PMek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659395428</pqid></control><display><type>article</type><title>Learning Mixed Strategies in Trajectory Games</title><source>Free E- Journals</source><creator>Peters, Lasse ; Fridovich-Keil, David ; Ferranti, Laura ; Stachniss, Cyrill ; Alonso-Mora, Javier ; Laine, rest</creator><creatorcontrib>Peters, Lasse ; Fridovich-Keil, David ; Ferranti, Laura ; Stachniss, Cyrill ; Alonso-Mora, Javier ; Laine, rest</creatorcontrib><description>In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag."</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Business competition ; Game theory ; Games ; Interaction models ; Multiagent systems ; Pursuit-evasion games</subject><ispartof>arXiv.org, 2022-05</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Peters, Lasse</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><creatorcontrib>Ferranti, Laura</creatorcontrib><creatorcontrib>Stachniss, Cyrill</creatorcontrib><creatorcontrib>Alonso-Mora, Javier</creatorcontrib><creatorcontrib>Laine, rest</creatorcontrib><title>Learning Mixed Strategies in Trajectory Games</title><title>arXiv.org</title><description>In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag."</description><subject>Business competition</subject><subject>Game theory</subject><subject>Games</subject><subject>Interaction models</subject><subject>Multiagent systems</subject><subject>Pursuit-evasion games</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9UlNLMrLzEtX8M2sSE1RCC4pSixJTc9MLVbIzFMIKUrMSk0uyS-qVHBPzE0t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzU0tjS1MTIwtj4lQBAK2PMek</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Peters, Lasse</creator><creator>Fridovich-Keil, David</creator><creator>Ferranti, Laura</creator><creator>Stachniss, Cyrill</creator><creator>Alonso-Mora, Javier</creator><creator>Laine, rest</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220503</creationdate><title>Learning Mixed Strategies in Trajectory Games</title><author>Peters, Lasse ; Fridovich-Keil, David ; Ferranti, Laura ; Stachniss, Cyrill ; Alonso-Mora, Javier ; Laine, rest</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26593954283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Business competition</topic><topic>Game theory</topic><topic>Games</topic><topic>Interaction models</topic><topic>Multiagent systems</topic><topic>Pursuit-evasion games</topic><toplevel>online_resources</toplevel><creatorcontrib>Peters, Lasse</creatorcontrib><creatorcontrib>Fridovich-Keil, David</creatorcontrib><creatorcontrib>Ferranti, Laura</creatorcontrib><creatorcontrib>Stachniss, Cyrill</creatorcontrib><creatorcontrib>Alonso-Mora, Javier</creatorcontrib><creatorcontrib>Laine, rest</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Lasse</au><au>Fridovich-Keil, David</au><au>Ferranti, Laura</au><au>Stachniss, Cyrill</au><au>Alonso-Mora, Javier</au><au>Laine, rest</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Mixed Strategies in Trajectory Games</atitle><jtitle>arXiv.org</jtitle><date>2022-05-03</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In multi-agent settings, game theory is a natural framework for describing the strategic interactions of agents whose objectives depend upon one another's behavior. Trajectory games capture these complex effects by design. In competitive settings, this makes them a more faithful interaction model than traditional "predict then plan" approaches. However, current game-theoretic planning methods have important limitations. In this work, we propose two main contributions. First, we introduce an offline training phase which reduces the online computational burden of solving trajectory games. Second, we formulate a lifted game which allows players to optimize multiple candidate trajectories in unison and thereby construct more competitive "mixed" strategies. We validate our approach on a number of experiments using the pursuit-evasion game "tag."</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2659395428 |
source | Free E- Journals |
subjects | Business competition Game theory Games Interaction models Multiagent systems Pursuit-evasion games |
title | Learning Mixed Strategies in Trajectory Games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A17%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Mixed%20Strategies%20in%20Trajectory%20Games&rft.jtitle=arXiv.org&rft.au=Peters,%20Lasse&rft.date=2022-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2659395428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659395428&rft_id=info:pmid/&rfr_iscdi=true |