Robust Sewer Defect Detection With Text Analysis Based on Deep Learning
Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.46224-46237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46237 |
---|---|
container_issue | |
container_start_page | 46224 |
container_title | IEEE access |
container_volume | 10 |
creator | Oh, Chanmi Dang, L. Minh Han, Dongil Moon, Hyeonjoon |
description | Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD. |
doi_str_mv | 10.1109/ACCESS.2022.3168660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659345410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759370</ieee_id><doaj_id>oai_doaj_org_article_2469b19802754937b12bc40fff28d201</doaj_id><sourcerecordid>2659345410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</originalsourceid><addsrcrecordid>eNpNUU1PwkAQ3RhNJMgv4NLEM7jf3R6xIJKQmAjG42bbzuISbHG3RPn3LpYQ5_ImM_PezOQhNCR4TAjOHiZ5PlutxhRTOmZEKinxFepRIrMRE0xe_8tv0SCELY6hYkmkPTR_bYpDaJMVfINPpmChbCO0EVxTJ--u_UjW8NMmk9rsjsGF5NEEqJLYmwLskyUYX7t6c4durNkFGJyxj96eZuv8ebR8mS_yyXJUcqzakWKKV8KagqoiJVRaAVxRajCmUtlUVpYpUhUCSsKJTAmXmDAqSy6kKHEpWB8tOt2qMVu99-7T-KNujNN_hcZvtPGtK3egKZdZQTKFaSp4xtKC0CJeYa2lqqJRt4_uO629b74OEFq9bQ4-_hk0lSJjXHCC4xTrpkrfhODBXrYSrE8G6M4AfTJAnw2IrGHHcgBwYWRplE0x-wVMcH2q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659345410</pqid></control><display><type>article</type><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</creator><creatorcontrib>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</creatorcontrib><description>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attention mechanism ; Data mining ; Datasets ; Deep learning ; defect detection ; Feature extraction ; Inspection ; Liquid wastes ; Manuals ; Pipelines ; Pipes (defects) ; Recognition ; Sewage ; sewer ; Sewer maintenance ; Sewer pipes ; Text recognition ; Video ; Videos ; YOLO</subject><ispartof>IEEE access, 2022, Vol.10, p.46224-46237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</citedby><cites>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</cites><orcidid>0000-0001-7668-3838 ; 0000-0001-5763-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759370$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27634,27924,27925,27926,54934</link.rule.ids></links><search><creatorcontrib>Oh, Chanmi</creatorcontrib><creatorcontrib>Dang, L. Minh</creatorcontrib><creatorcontrib>Han, Dongil</creatorcontrib><creatorcontrib>Moon, Hyeonjoon</creatorcontrib><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</description><subject>attention mechanism</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>defect detection</subject><subject>Feature extraction</subject><subject>Inspection</subject><subject>Liquid wastes</subject><subject>Manuals</subject><subject>Pipelines</subject><subject>Pipes (defects)</subject><subject>Recognition</subject><subject>Sewage</subject><subject>sewer</subject><subject>Sewer maintenance</subject><subject>Sewer pipes</subject><subject>Text recognition</subject><subject>Video</subject><subject>Videos</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQ3RhNJMgv4NLEM7jf3R6xIJKQmAjG42bbzuISbHG3RPn3LpYQ5_ImM_PezOQhNCR4TAjOHiZ5PlutxhRTOmZEKinxFepRIrMRE0xe_8tv0SCELY6hYkmkPTR_bYpDaJMVfINPpmChbCO0EVxTJ--u_UjW8NMmk9rsjsGF5NEEqJLYmwLskyUYX7t6c4durNkFGJyxj96eZuv8ebR8mS_yyXJUcqzakWKKV8KagqoiJVRaAVxRajCmUtlUVpYpUhUCSsKJTAmXmDAqSy6kKHEpWB8tOt2qMVu99-7T-KNujNN_hcZvtPGtK3egKZdZQTKFaSp4xtKC0CJeYa2lqqJRt4_uO629b74OEFq9bQ4-_hk0lSJjXHCC4xTrpkrfhODBXrYSrE8G6M4AfTJAnw2IrGHHcgBwYWRplE0x-wVMcH2q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Oh, Chanmi</creator><creator>Dang, L. Minh</creator><creator>Han, Dongil</creator><creator>Moon, Hyeonjoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7668-3838</orcidid><orcidid>https://orcid.org/0000-0001-5763-570X</orcidid></search><sort><creationdate>2022</creationdate><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><author>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>defect detection</topic><topic>Feature extraction</topic><topic>Inspection</topic><topic>Liquid wastes</topic><topic>Manuals</topic><topic>Pipelines</topic><topic>Pipes (defects)</topic><topic>Recognition</topic><topic>Sewage</topic><topic>sewer</topic><topic>Sewer maintenance</topic><topic>Sewer pipes</topic><topic>Text recognition</topic><topic>Video</topic><topic>Videos</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Chanmi</creatorcontrib><creatorcontrib>Dang, L. Minh</creatorcontrib><creatorcontrib>Han, Dongil</creatorcontrib><creatorcontrib>Moon, Hyeonjoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Chanmi</au><au>Dang, L. Minh</au><au>Han, Dongil</au><au>Moon, Hyeonjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>46224</spage><epage>46237</epage><pages>46224-46237</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7668-3838</orcidid><orcidid>https://orcid.org/0000-0001-5763-570X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.46224-46237 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2659345410 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | attention mechanism Data mining Datasets Deep learning defect detection Feature extraction Inspection Liquid wastes Manuals Pipelines Pipes (defects) Recognition Sewage sewer Sewer maintenance Sewer pipes Text recognition Video Videos YOLO |
title | Robust Sewer Defect Detection With Text Analysis Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Sewer%20Defect%20Detection%20With%20Text%20Analysis%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Oh,%20Chanmi&rft.date=2022&rft.volume=10&rft.spage=46224&rft.epage=46237&rft.pages=46224-46237&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168660&rft_dat=%3Cproquest_ieee_%3E2659345410%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659345410&rft_id=info:pmid/&rft_ieee_id=9759370&rft_doaj_id=oai_doaj_org_article_2469b19802754937b12bc40fff28d201&rfr_iscdi=true |