Robust Sewer Defect Detection With Text Analysis Based on Deep Learning

Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.46224-46237
Hauptverfasser: Oh, Chanmi, Dang, L. Minh, Han, Dongil, Moon, Hyeonjoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46237
container_issue
container_start_page 46224
container_title IEEE access
container_volume 10
creator Oh, Chanmi
Dang, L. Minh
Han, Dongil
Moon, Hyeonjoon
description Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.
doi_str_mv 10.1109/ACCESS.2022.3168660
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2659345410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759370</ieee_id><doaj_id>oai_doaj_org_article_2469b19802754937b12bc40fff28d201</doaj_id><sourcerecordid>2659345410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</originalsourceid><addsrcrecordid>eNpNUU1PwkAQ3RhNJMgv4NLEM7jf3R6xIJKQmAjG42bbzuISbHG3RPn3LpYQ5_ImM_PezOQhNCR4TAjOHiZ5PlutxhRTOmZEKinxFepRIrMRE0xe_8tv0SCELY6hYkmkPTR_bYpDaJMVfINPpmChbCO0EVxTJ--u_UjW8NMmk9rsjsGF5NEEqJLYmwLskyUYX7t6c4durNkFGJyxj96eZuv8ebR8mS_yyXJUcqzakWKKV8KagqoiJVRaAVxRajCmUtlUVpYpUhUCSsKJTAmXmDAqSy6kKHEpWB8tOt2qMVu99-7T-KNujNN_hcZvtPGtK3egKZdZQTKFaSp4xtKC0CJeYa2lqqJRt4_uO629b74OEFq9bQ4-_hk0lSJjXHCC4xTrpkrfhODBXrYSrE8G6M4AfTJAnw2IrGHHcgBwYWRplE0x-wVMcH2q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659345410</pqid></control><display><type>article</type><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</creator><creatorcontrib>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</creatorcontrib><description>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3168660</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>attention mechanism ; Data mining ; Datasets ; Deep learning ; defect detection ; Feature extraction ; Inspection ; Liquid wastes ; Manuals ; Pipelines ; Pipes (defects) ; Recognition ; Sewage ; sewer ; Sewer maintenance ; Sewer pipes ; Text recognition ; Video ; Videos ; YOLO</subject><ispartof>IEEE access, 2022, Vol.10, p.46224-46237</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</citedby><cites>FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</cites><orcidid>0000-0001-7668-3838 ; 0000-0001-5763-570X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759370$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27634,27924,27925,27926,54934</link.rule.ids></links><search><creatorcontrib>Oh, Chanmi</creatorcontrib><creatorcontrib>Dang, L. Minh</creatorcontrib><creatorcontrib>Han, Dongil</creatorcontrib><creatorcontrib>Moon, Hyeonjoon</creatorcontrib><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</description><subject>attention mechanism</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>defect detection</subject><subject>Feature extraction</subject><subject>Inspection</subject><subject>Liquid wastes</subject><subject>Manuals</subject><subject>Pipelines</subject><subject>Pipes (defects)</subject><subject>Recognition</subject><subject>Sewage</subject><subject>sewer</subject><subject>Sewer maintenance</subject><subject>Sewer pipes</subject><subject>Text recognition</subject><subject>Video</subject><subject>Videos</subject><subject>YOLO</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwkAQ3RhNJMgv4NLEM7jf3R6xIJKQmAjG42bbzuISbHG3RPn3LpYQ5_ImM_PezOQhNCR4TAjOHiZ5PlutxhRTOmZEKinxFepRIrMRE0xe_8tv0SCELY6hYkmkPTR_bYpDaJMVfINPpmChbCO0EVxTJ--u_UjW8NMmk9rsjsGF5NEEqJLYmwLskyUYX7t6c4durNkFGJyxj96eZuv8ebR8mS_yyXJUcqzakWKKV8KagqoiJVRaAVxRajCmUtlUVpYpUhUCSsKJTAmXmDAqSy6kKHEpWB8tOt2qMVu99-7T-KNujNN_hcZvtPGtK3egKZdZQTKFaSp4xtKC0CJeYa2lqqJRt4_uO629b74OEFq9bQ4-_hk0lSJjXHCC4xTrpkrfhODBXrYSrE8G6M4AfTJAnw2IrGHHcgBwYWRplE0x-wVMcH2q</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Oh, Chanmi</creator><creator>Dang, L. Minh</creator><creator>Han, Dongil</creator><creator>Moon, Hyeonjoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7668-3838</orcidid><orcidid>https://orcid.org/0000-0001-5763-570X</orcidid></search><sort><creationdate>2022</creationdate><title>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</title><author>Oh, Chanmi ; Dang, L. Minh ; Han, Dongil ; Moon, Hyeonjoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8384d5fab28b7126f5e4822a00268f76df381db5ec1416714601326c4565c0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>attention mechanism</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>defect detection</topic><topic>Feature extraction</topic><topic>Inspection</topic><topic>Liquid wastes</topic><topic>Manuals</topic><topic>Pipelines</topic><topic>Pipes (defects)</topic><topic>Recognition</topic><topic>Sewage</topic><topic>sewer</topic><topic>Sewer maintenance</topic><topic>Sewer pipes</topic><topic>Text recognition</topic><topic>Video</topic><topic>Videos</topic><topic>YOLO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Chanmi</creatorcontrib><creatorcontrib>Dang, L. Minh</creatorcontrib><creatorcontrib>Han, Dongil</creatorcontrib><creatorcontrib>Moon, Hyeonjoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Chanmi</au><au>Dang, L. Minh</au><au>Han, Dongil</au><au>Moon, Hyeonjoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Sewer Defect Detection With Text Analysis Based on Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>46224</spage><epage>46237</epage><pages>46224-46237</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3168660</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7668-3838</orcidid><orcidid>https://orcid.org/0000-0001-5763-570X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.46224-46237
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2659345410
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects attention mechanism
Data mining
Datasets
Deep learning
defect detection
Feature extraction
Inspection
Liquid wastes
Manuals
Pipelines
Pipes (defects)
Recognition
Sewage
sewer
Sewer maintenance
Sewer pipes
Text recognition
Video
Videos
YOLO
title Robust Sewer Defect Detection With Text Analysis Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T13%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Sewer%20Defect%20Detection%20With%20Text%20Analysis%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Oh,%20Chanmi&rft.date=2022&rft.volume=10&rft.spage=46224&rft.epage=46237&rft.pages=46224-46237&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3168660&rft_dat=%3Cproquest_ieee_%3E2659345410%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659345410&rft_id=info:pmid/&rft_ieee_id=9759370&rft_doaj_id=oai_doaj_org_article_2469b19802754937b12bc40fff28d201&rfr_iscdi=true