Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties

The atomic doping of microporous carbon can give rise to variations in material properties and has been used to enhance electrochemical and charge storage properties. Here, we have investigated the effect of doping of nitrogen (N) and sulfur (S) on zeolite-templated carbon (ZTC). N-doped zeolite-tem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2022-06, Vol.193, p.42-50
Hauptverfasser: Choi, Woosuk, Bera, Raj Kumar, Han, Seung Won, Park, Hongjun, Go, Tae Won, Choi, Minkee, Ryoo, Ryong, Park, Jeong Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 42
container_title Carbon (New York)
container_volume 193
creator Choi, Woosuk
Bera, Raj Kumar
Han, Seung Won
Park, Hongjun
Go, Tae Won
Choi, Minkee
Ryoo, Ryong
Park, Jeong Young
description The atomic doping of microporous carbon can give rise to variations in material properties and has been used to enhance electrochemical and charge storage properties. Here, we have investigated the effect of doping of nitrogen (N) and sulfur (S) on zeolite-templated carbon (ZTC). N-doped zeolite-templated carbon (N-ZTC) with various structures, including pyridinic N, pyrrolic N, and graphitic N, has a different composition ratio depending on the temperature at which it was synthesized. The composition, electrical conductance, and work functions of doped ZTC were investigated with X-ray photoelectron spectroscopy (XPS), conductive atomic force microscopy (C-AFM), and Kelvin probe force microscopy (KPFM), respectively. We found that N-doped ZTC synthesized at the highest temperature (700 °C) showed the highest graphitic N ratio and electrical conductance, indicating an optimized n-type doping effect. On the other hand, N-ZTC synthesized at the lowest temperature (500 °C) showed a high ratio of pyridinic N and pyrrolic N and low electrical conductance. These doped ZTCs were tested as supercapacitor electrode materials and exhibited low ohmic drop and high capacitance, with an increase in the conductance of the doped ZTCs samples. The structure of graphitic N showed an n-type doping effect in ZTC, whereas pyridinic N showed a weak n-type doping effect. This phenomenon was explained by measuring the work function of KPFM. The results suggest a direct relationship between electrical conductance and carbon-dopant bonding in doped microporous structures, suggesting the possibility of tuning material properties with atomic doping. [Display omitted]
doi_str_mv 10.1016/j.carbon.2022.02.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659294910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622322001415</els_id><sourcerecordid>2659294910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-bd970245ddde1f2e352456114ae588df72434cf41a1fc9b17e6e5dc7d24aa3973</originalsourceid><addsrcrecordid>eNp9UMtKBDEQDKLguvoHHgKeZ8xrXhdBVleFBS96DtmkIxlmJ2OSEfTrzTKehYKmm-oqqhC6pqSkhNa3falV2PuxZISxkmRU9Qla0bbhBW87eopWhJC2qBnj5-gixj6voqVihfSDn9z4gcFa0Al7i3_ADy5BkeAwDSqBwYs4zoAhk4LTasDaj2bWSY0asBoNjvMEQatJabccp-DzJTmIl-jMqiHC1d9co_ft49vmudi9Pr1s7neF5lykYm-6hjBRGWOAWga8yktNqVBQta2xDRNcaCuoolZ3e9pADZXRjWFCKd41fI1uFt1s_TlDTLL3cxizpWR11bFOdJRkllhYOvgYA1g5BXdQ4VtSIo91yl4uieWxTkkyqjq_3S1vkBN8OQgyagc5qHEhlyKNd_8L_ALS34Gk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659294910</pqid></control><display><type>article</type><title>Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Choi, Woosuk ; Bera, Raj Kumar ; Han, Seung Won ; Park, Hongjun ; Go, Tae Won ; Choi, Minkee ; Ryoo, Ryong ; Park, Jeong Young</creator><creatorcontrib>Choi, Woosuk ; Bera, Raj Kumar ; Han, Seung Won ; Park, Hongjun ; Go, Tae Won ; Choi, Minkee ; Ryoo, Ryong ; Park, Jeong Young</creatorcontrib><description>The atomic doping of microporous carbon can give rise to variations in material properties and has been used to enhance electrochemical and charge storage properties. Here, we have investigated the effect of doping of nitrogen (N) and sulfur (S) on zeolite-templated carbon (ZTC). N-doped zeolite-templated carbon (N-ZTC) with various structures, including pyridinic N, pyrrolic N, and graphitic N, has a different composition ratio depending on the temperature at which it was synthesized. The composition, electrical conductance, and work functions of doped ZTC were investigated with X-ray photoelectron spectroscopy (XPS), conductive atomic force microscopy (C-AFM), and Kelvin probe force microscopy (KPFM), respectively. We found that N-doped ZTC synthesized at the highest temperature (700 °C) showed the highest graphitic N ratio and electrical conductance, indicating an optimized n-type doping effect. On the other hand, N-ZTC synthesized at the lowest temperature (500 °C) showed a high ratio of pyridinic N and pyrrolic N and low electrical conductance. These doped ZTCs were tested as supercapacitor electrode materials and exhibited low ohmic drop and high capacitance, with an increase in the conductance of the doped ZTCs samples. The structure of graphitic N showed an n-type doping effect in ZTC, whereas pyridinic N showed a weak n-type doping effect. This phenomenon was explained by measuring the work function of KPFM. The results suggest a direct relationship between electrical conductance and carbon-dopant bonding in doped microporous structures, suggesting the possibility of tuning material properties with atomic doping. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2022.02.056</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Capacitance ; Carbon ; Chemical synthesis ; Composition ; Conductive atomic force microscopy (C-AFM) ; Conductivity ; Doping ; Doping effect ; Electrical resistance ; Electrode materials ; Kelvin probe force microscopy (KPFM) ; Material properties ; Nitrogen ; Ohmic drop ; Photoelectrons ; Temperature effects ; Work functions ; X ray photoelectron spectroscopy ; Zeolite-templated carbon (ZTC) ; Zeolites</subject><ispartof>Carbon (New York), 2022-06, Vol.193, p.42-50</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 30, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-bd970245ddde1f2e352456114ae588df72434cf41a1fc9b17e6e5dc7d24aa3973</citedby><cites>FETCH-LOGICAL-c334t-bd970245ddde1f2e352456114ae588df72434cf41a1fc9b17e6e5dc7d24aa3973</cites><orcidid>0000-0002-8132-3076 ; 0000-0002-8978-7342</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2022.02.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Bera, Raj Kumar</creatorcontrib><creatorcontrib>Han, Seung Won</creatorcontrib><creatorcontrib>Park, Hongjun</creatorcontrib><creatorcontrib>Go, Tae Won</creatorcontrib><creatorcontrib>Choi, Minkee</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><title>Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties</title><title>Carbon (New York)</title><description>The atomic doping of microporous carbon can give rise to variations in material properties and has been used to enhance electrochemical and charge storage properties. Here, we have investigated the effect of doping of nitrogen (N) and sulfur (S) on zeolite-templated carbon (ZTC). N-doped zeolite-templated carbon (N-ZTC) with various structures, including pyridinic N, pyrrolic N, and graphitic N, has a different composition ratio depending on the temperature at which it was synthesized. The composition, electrical conductance, and work functions of doped ZTC were investigated with X-ray photoelectron spectroscopy (XPS), conductive atomic force microscopy (C-AFM), and Kelvin probe force microscopy (KPFM), respectively. We found that N-doped ZTC synthesized at the highest temperature (700 °C) showed the highest graphitic N ratio and electrical conductance, indicating an optimized n-type doping effect. On the other hand, N-ZTC synthesized at the lowest temperature (500 °C) showed a high ratio of pyridinic N and pyrrolic N and low electrical conductance. These doped ZTCs were tested as supercapacitor electrode materials and exhibited low ohmic drop and high capacitance, with an increase in the conductance of the doped ZTCs samples. The structure of graphitic N showed an n-type doping effect in ZTC, whereas pyridinic N showed a weak n-type doping effect. This phenomenon was explained by measuring the work function of KPFM. The results suggest a direct relationship between electrical conductance and carbon-dopant bonding in doped microporous structures, suggesting the possibility of tuning material properties with atomic doping. [Display omitted]</description><subject>Atomic force microscopy</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>Chemical synthesis</subject><subject>Composition</subject><subject>Conductive atomic force microscopy (C-AFM)</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Doping effect</subject><subject>Electrical resistance</subject><subject>Electrode materials</subject><subject>Kelvin probe force microscopy (KPFM)</subject><subject>Material properties</subject><subject>Nitrogen</subject><subject>Ohmic drop</subject><subject>Photoelectrons</subject><subject>Temperature effects</subject><subject>Work functions</subject><subject>X ray photoelectron spectroscopy</subject><subject>Zeolite-templated carbon (ZTC)</subject><subject>Zeolites</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKBDEQDKLguvoHHgKeZ8xrXhdBVleFBS96DtmkIxlmJ2OSEfTrzTKehYKmm-oqqhC6pqSkhNa3falV2PuxZISxkmRU9Qla0bbhBW87eopWhJC2qBnj5-gixj6voqVihfSDn9z4gcFa0Al7i3_ADy5BkeAwDSqBwYs4zoAhk4LTasDaj2bWSY0asBoNjvMEQatJabccp-DzJTmIl-jMqiHC1d9co_ft49vmudi9Pr1s7neF5lykYm-6hjBRGWOAWga8yktNqVBQta2xDRNcaCuoolZ3e9pADZXRjWFCKd41fI1uFt1s_TlDTLL3cxizpWR11bFOdJRkllhYOvgYA1g5BXdQ4VtSIo91yl4uieWxTkkyqjq_3S1vkBN8OQgyagc5qHEhlyKNd_8L_ALS34Gk</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>Choi, Woosuk</creator><creator>Bera, Raj Kumar</creator><creator>Han, Seung Won</creator><creator>Park, Hongjun</creator><creator>Go, Tae Won</creator><creator>Choi, Minkee</creator><creator>Ryoo, Ryong</creator><creator>Park, Jeong Young</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0002-8978-7342</orcidid></search><sort><creationdate>20220630</creationdate><title>Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties</title><author>Choi, Woosuk ; Bera, Raj Kumar ; Han, Seung Won ; Park, Hongjun ; Go, Tae Won ; Choi, Minkee ; Ryoo, Ryong ; Park, Jeong Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-bd970245ddde1f2e352456114ae588df72434cf41a1fc9b17e6e5dc7d24aa3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>Chemical synthesis</topic><topic>Composition</topic><topic>Conductive atomic force microscopy (C-AFM)</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Doping effect</topic><topic>Electrical resistance</topic><topic>Electrode materials</topic><topic>Kelvin probe force microscopy (KPFM)</topic><topic>Material properties</topic><topic>Nitrogen</topic><topic>Ohmic drop</topic><topic>Photoelectrons</topic><topic>Temperature effects</topic><topic>Work functions</topic><topic>X ray photoelectron spectroscopy</topic><topic>Zeolite-templated carbon (ZTC)</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Woosuk</creatorcontrib><creatorcontrib>Bera, Raj Kumar</creatorcontrib><creatorcontrib>Han, Seung Won</creatorcontrib><creatorcontrib>Park, Hongjun</creatorcontrib><creatorcontrib>Go, Tae Won</creatorcontrib><creatorcontrib>Choi, Minkee</creatorcontrib><creatorcontrib>Ryoo, Ryong</creatorcontrib><creatorcontrib>Park, Jeong Young</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Woosuk</au><au>Bera, Raj Kumar</au><au>Han, Seung Won</au><au>Park, Hongjun</au><au>Go, Tae Won</au><au>Choi, Minkee</au><au>Ryoo, Ryong</au><au>Park, Jeong Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties</atitle><jtitle>Carbon (New York)</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>193</volume><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The atomic doping of microporous carbon can give rise to variations in material properties and has been used to enhance electrochemical and charge storage properties. Here, we have investigated the effect of doping of nitrogen (N) and sulfur (S) on zeolite-templated carbon (ZTC). N-doped zeolite-templated carbon (N-ZTC) with various structures, including pyridinic N, pyrrolic N, and graphitic N, has a different composition ratio depending on the temperature at which it was synthesized. The composition, electrical conductance, and work functions of doped ZTC were investigated with X-ray photoelectron spectroscopy (XPS), conductive atomic force microscopy (C-AFM), and Kelvin probe force microscopy (KPFM), respectively. We found that N-doped ZTC synthesized at the highest temperature (700 °C) showed the highest graphitic N ratio and electrical conductance, indicating an optimized n-type doping effect. On the other hand, N-ZTC synthesized at the lowest temperature (500 °C) showed a high ratio of pyridinic N and pyrrolic N and low electrical conductance. These doped ZTCs were tested as supercapacitor electrode materials and exhibited low ohmic drop and high capacitance, with an increase in the conductance of the doped ZTCs samples. The structure of graphitic N showed an n-type doping effect in ZTC, whereas pyridinic N showed a weak n-type doping effect. This phenomenon was explained by measuring the work function of KPFM. The results suggest a direct relationship between electrical conductance and carbon-dopant bonding in doped microporous structures, suggesting the possibility of tuning material properties with atomic doping. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2022.02.056</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8132-3076</orcidid><orcidid>https://orcid.org/0000-0002-8978-7342</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2022-06, Vol.193, p.42-50
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_2659294910
source ScienceDirect Journals (5 years ago - present)
subjects Atomic force microscopy
Capacitance
Carbon
Chemical synthesis
Composition
Conductive atomic force microscopy (C-AFM)
Conductivity
Doping
Doping effect
Electrical resistance
Electrode materials
Kelvin probe force microscopy (KPFM)
Material properties
Nitrogen
Ohmic drop
Photoelectrons
Temperature effects
Work functions
X ray photoelectron spectroscopy
Zeolite-templated carbon (ZTC)
Zeolites
title Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Doping%20effect%20of%20zeolite-templated%20carbon%20on%20electrical%20conductance%20and%20supercapacitance%20properties&rft.jtitle=Carbon%20(New%20York)&rft.au=Choi,%20Woosuk&rft.date=2022-06-30&rft.volume=193&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2022.02.056&rft_dat=%3Cproquest_cross%3E2659294910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659294910&rft_id=info:pmid/&rft_els_id=S0008622322001415&rfr_iscdi=true