The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation

This paper is devoted to studying the existence and uniqueness of global admissible conservative weak solution for the periodic single-cycle pulse equation without any additional assumptions. Firstly, introducing a new set of variables, we transform the single-cycle pulse equation into an equivalent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2022-08, Vol.24 (3), Article 57
Hauptverfasser: Guo, Yingying, Yin, Zhaoyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of mathematical fluid mechanics
container_volume 24
creator Guo, Yingying
Yin, Zhaoyang
description This paper is devoted to studying the existence and uniqueness of global admissible conservative weak solution for the periodic single-cycle pulse equation without any additional assumptions. Firstly, introducing a new set of variables, we transform the single-cycle pulse equation into an equivalent semilinear system. Using the standard ordinary differential equation theory, the global solution of the semilinear system is studied. Secondly, returning to the original coordinates, we get a global admissible conservative weak solution for the periodic single-cycle pulse equation. Finally, choosing some vital test functions which are different from [Bressan (Discrete Contin. Dyn. Syst 35:25-42, 2015), Brunelli (Phys. Lett. A 353:475-478, 2006)], we find a equation to single out a unique characteristic curve through each initial point. Moreover, the uniqueness of global admissible conservative weak solution is obtained.
doi_str_mv 10.1007/s00021-022-00691-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659268669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659268669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-fa5ff37b43ddf3f751e713ec2abd2a7cf3b84ba6ea4181e14e363fc6c2886dbd3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRsFb_gKuA69E8ppmZZRnqAwoW2uIyZDI3NXWatMlMsf_e1IruXN0H55zL_ZLkluB7gnH-EDDGlKSY0hRjXpKUnyUDksWRlyN6_tvT4jK5CmGNMclHJR0kh8U7oMmnCR1YBUjaBi2t2fVgIQTkNHpqXS1bNG42JgRTt4AqZwP4vezMHtAbyA80d23fGWeRdh51MXAG3rjGKDQ3dtVCWh1UNM76NsRju14exdfJhZZxcfNTh8nycbKontPp69NLNZ6miua4S7Ucac3yOmNNo5nORwRywkBRWTdU5kqzushqyUFmpCBAMmCcacUVLQre1A0bJnen3K138a_QibXrvY0nBeWRAS84L6OKnlTKuxA8aLH1ZiP9QRAsjojFCbGIiMU3YsGjiZ1MIYrtCvxf9D-uLyk5gNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659268669</pqid></control><display><type>article</type><title>The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Yingying ; Yin, Zhaoyang</creator><creatorcontrib>Guo, Yingying ; Yin, Zhaoyang</creatorcontrib><description>This paper is devoted to studying the existence and uniqueness of global admissible conservative weak solution for the periodic single-cycle pulse equation without any additional assumptions. Firstly, introducing a new set of variables, we transform the single-cycle pulse equation into an equivalent semilinear system. Using the standard ordinary differential equation theory, the global solution of the semilinear system is studied. Secondly, returning to the original coordinates, we get a global admissible conservative weak solution for the periodic single-cycle pulse equation. Finally, choosing some vital test functions which are different from [Bressan (Discrete Contin. Dyn. Syst 35:25-42, 2015), Brunelli (Phys. Lett. A 353:475-478, 2006)], we find a equation to single out a unique characteristic curve through each initial point. Moreover, the uniqueness of global admissible conservative weak solution is obtained.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-022-00691-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Classical and Continuum Physics ; Differential equations ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical Methods in Physics ; Ordinary differential equations ; Physics ; Physics and Astronomy ; Theoretical mathematics ; Uniqueness</subject><ispartof>Journal of mathematical fluid mechanics, 2022-08, Vol.24 (3), Article 57</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-fa5ff37b43ddf3f751e713ec2abd2a7cf3b84ba6ea4181e14e363fc6c2886dbd3</cites><orcidid>0000-0003-3199-7694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-022-00691-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-022-00691-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Guo, Yingying</creatorcontrib><creatorcontrib>Yin, Zhaoyang</creatorcontrib><title>The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>This paper is devoted to studying the existence and uniqueness of global admissible conservative weak solution for the periodic single-cycle pulse equation without any additional assumptions. Firstly, introducing a new set of variables, we transform the single-cycle pulse equation into an equivalent semilinear system. Using the standard ordinary differential equation theory, the global solution of the semilinear system is studied. Secondly, returning to the original coordinates, we get a global admissible conservative weak solution for the periodic single-cycle pulse equation. Finally, choosing some vital test functions which are different from [Bressan (Discrete Contin. Dyn. Syst 35:25-42, 2015), Brunelli (Phys. Lett. A 353:475-478, 2006)], we find a equation to single out a unique characteristic curve through each initial point. Moreover, the uniqueness of global admissible conservative weak solution is obtained.</description><subject>Classical and Continuum Physics</subject><subject>Differential equations</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical mathematics</subject><subject>Uniqueness</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRsFb_gKuA69E8ppmZZRnqAwoW2uIyZDI3NXWatMlMsf_e1IruXN0H55zL_ZLkluB7gnH-EDDGlKSY0hRjXpKUnyUDksWRlyN6_tvT4jK5CmGNMclHJR0kh8U7oMmnCR1YBUjaBi2t2fVgIQTkNHpqXS1bNG42JgRTt4AqZwP4vezMHtAbyA80d23fGWeRdh51MXAG3rjGKDQ3dtVCWh1UNM76NsRju14exdfJhZZxcfNTh8nycbKontPp69NLNZ6miua4S7Ucac3yOmNNo5nORwRywkBRWTdU5kqzushqyUFmpCBAMmCcacUVLQre1A0bJnen3K138a_QibXrvY0nBeWRAS84L6OKnlTKuxA8aLH1ZiP9QRAsjojFCbGIiMU3YsGjiZ1MIYrtCvxf9D-uLyk5gNk</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Guo, Yingying</creator><creator>Yin, Zhaoyang</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3199-7694</orcidid></search><sort><creationdate>20220801</creationdate><title>The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation</title><author>Guo, Yingying ; Yin, Zhaoyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-fa5ff37b43ddf3f751e713ec2abd2a7cf3b84ba6ea4181e14e363fc6c2886dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Continuum Physics</topic><topic>Differential equations</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical mathematics</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yingying</creatorcontrib><creatorcontrib>Yin, Zhaoyang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yingying</au><au>Yin, Zhaoyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>24</volume><issue>3</issue><artnum>57</artnum><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>This paper is devoted to studying the existence and uniqueness of global admissible conservative weak solution for the periodic single-cycle pulse equation without any additional assumptions. Firstly, introducing a new set of variables, we transform the single-cycle pulse equation into an equivalent semilinear system. Using the standard ordinary differential equation theory, the global solution of the semilinear system is studied. Secondly, returning to the original coordinates, we get a global admissible conservative weak solution for the periodic single-cycle pulse equation. Finally, choosing some vital test functions which are different from [Bressan (Discrete Contin. Dyn. Syst 35:25-42, 2015), Brunelli (Phys. Lett. A 353:475-478, 2006)], we find a equation to single out a unique characteristic curve through each initial point. Moreover, the uniqueness of global admissible conservative weak solution is obtained.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-022-00691-6</doi><orcidid>https://orcid.org/0000-0003-3199-7694</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2022-08, Vol.24 (3), Article 57
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2659268669
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Differential equations
Fluid mechanics
Fluid- and Aerodynamics
Mathematical Methods in Physics
Ordinary differential equations
Physics
Physics and Astronomy
Theoretical mathematics
Uniqueness
title The Existence and Uniqueness of Global Admissible Conservative Weak Solution for the Periodic Single-Cycle Pulse Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Existence%20and%20Uniqueness%20of%20Global%20Admissible%20Conservative%20Weak%20Solution%20for%20the%20Periodic%20Single-Cycle%20Pulse%20Equation&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Guo,%20Yingying&rft.date=2022-08-01&rft.volume=24&rft.issue=3&rft.artnum=57&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-022-00691-6&rft_dat=%3Cproquest_cross%3E2659268669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659268669&rft_id=info:pmid/&rfr_iscdi=true