Population‐level inference for home‐range areas

Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2022-05, Vol.13 (5), p.1027-1041
Hauptverfasser: Fleming, Christen H., Deznabi, Iman, Alavi, Shauhin, Crofoot, Margaret C., Hirsch, Ben T., Medici, E. Patricia, Noonan, Michael J., Kays, Roland, Fagan, William F., Sheldon, Daniel, Calabrese, Justin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1041
container_issue 5
container_start_page 1027
container_title Methods in ecology and evolution
container_volume 13
creator Fleming, Christen H.
Deznabi, Iman
Alavi, Shauhin
Crofoot, Margaret C.
Hirsch, Ben T.
Medici, E. Patricia
Noonan, Michael J.
Kays, Roland
Fagan, William F.
Sheldon, Daniel
Calabrese, Justin M.
description Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population‐level home‐range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population‐level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home‐range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population‐level analysis of home‐range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white‐nosed coati Nasua narica, white‐faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home‐range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.
doi_str_mv 10.1111/2041-210X.13815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2659019429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2659019429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3575-59631e58054a152c239148d17afd759f4883cabdad9a1d176d1d28c912f3b04d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIVKVnrpE4p_X6kdhHVIWHVAQHkLhZbmxDqjQudgvqjU_gG_kSHIIQN-ayq92ZXc0gdAp4CgkzghnkBPDjFKgAfoBGv5PDP_0xmsS4wglUSEzYCNE7v9m1etv47vP9o7Wvts2aztlgu9pmzofs2a9tWgXdPdlMB6vjCTpyuo128lPH6OGiup9f5Yvby-v5-SKvKS95zmVBwXKBOdPASU2oBCYMlNqZkkvHhKC1XhptpIY0LgwYImoJxNElZoaO0dlwdxP8y87GrVr5XejSS0UKLjFIRmRizQZWHXyMwTq1Cc1ah70CrPpwVG9f9fbVdzhJUQyKt6a1-__o6qaq6CD8AuxhZns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659019429</pqid></control><display><type>article</type><title>Population‐level inference for home‐range areas</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Fleming, Christen H. ; Deznabi, Iman ; Alavi, Shauhin ; Crofoot, Margaret C. ; Hirsch, Ben T. ; Medici, E. Patricia ; Noonan, Michael J. ; Kays, Roland ; Fagan, William F. ; Sheldon, Daniel ; Calabrese, Justin M.</creator><creatorcontrib>Fleming, Christen H. ; Deznabi, Iman ; Alavi, Shauhin ; Crofoot, Margaret C. ; Hirsch, Ben T. ; Medici, E. Patricia ; Noonan, Michael J. ; Kays, Roland ; Fagan, William F. ; Sheldon, Daniel ; Calabrese, Justin M.</creatorcontrib><description>Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population‐level home‐range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population‐level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home‐range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population‐level analysis of home‐range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white‐nosed coati Nasua narica, white‐faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home‐range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13815</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>animal movement ; Autocorrelation ; Comparative analysis ; Density ; Empirical analysis ; Environmental quality ; Estimates ; Home range ; Inference ; Kernels ; Mathematical analysis ; Monkeys ; Population ; Population (statistical) ; population ecology ; Tracking ; Uncertainty</subject><ispartof>Methods in ecology and evolution, 2022-05, Vol.13 (5), p.1027-1041</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3575-59631e58054a152c239148d17afd759f4883cabdad9a1d176d1d28c912f3b04d3</citedby><cites>FETCH-LOGICAL-c3575-59631e58054a152c239148d17afd759f4883cabdad9a1d176d1d28c912f3b04d3</cites><orcidid>0000-0002-9356-6518 ; 0000-0003-2433-9052 ; 0000-0002-4257-2432 ; 0000-0003-0575-6408 ; 0000-0003-0142-7340 ; 0000-0002-2947-6665 ; 0000-0003-4512-0535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13815$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13815$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Fleming, Christen H.</creatorcontrib><creatorcontrib>Deznabi, Iman</creatorcontrib><creatorcontrib>Alavi, Shauhin</creatorcontrib><creatorcontrib>Crofoot, Margaret C.</creatorcontrib><creatorcontrib>Hirsch, Ben T.</creatorcontrib><creatorcontrib>Medici, E. Patricia</creatorcontrib><creatorcontrib>Noonan, Michael J.</creatorcontrib><creatorcontrib>Kays, Roland</creatorcontrib><creatorcontrib>Fagan, William F.</creatorcontrib><creatorcontrib>Sheldon, Daniel</creatorcontrib><creatorcontrib>Calabrese, Justin M.</creatorcontrib><title>Population‐level inference for home‐range areas</title><title>Methods in ecology and evolution</title><description>Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population‐level home‐range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population‐level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home‐range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population‐level analysis of home‐range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white‐nosed coati Nasua narica, white‐faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home‐range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.</description><subject>animal movement</subject><subject>Autocorrelation</subject><subject>Comparative analysis</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Environmental quality</subject><subject>Estimates</subject><subject>Home range</subject><subject>Inference</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Monkeys</subject><subject>Population</subject><subject>Population (statistical)</subject><subject>population ecology</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFUMtOwzAQtBBIVKVnrpE4p_X6kdhHVIWHVAQHkLhZbmxDqjQudgvqjU_gG_kSHIIQN-ayq92ZXc0gdAp4CgkzghnkBPDjFKgAfoBGv5PDP_0xmsS4wglUSEzYCNE7v9m1etv47vP9o7Wvts2aztlgu9pmzofs2a9tWgXdPdlMB6vjCTpyuo128lPH6OGiup9f5Yvby-v5-SKvKS95zmVBwXKBOdPASU2oBCYMlNqZkkvHhKC1XhptpIY0LgwYImoJxNElZoaO0dlwdxP8y87GrVr5XejSS0UKLjFIRmRizQZWHXyMwTq1Cc1ah70CrPpwVG9f9fbVdzhJUQyKt6a1-__o6qaq6CD8AuxhZns</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Fleming, Christen H.</creator><creator>Deznabi, Iman</creator><creator>Alavi, Shauhin</creator><creator>Crofoot, Margaret C.</creator><creator>Hirsch, Ben T.</creator><creator>Medici, E. Patricia</creator><creator>Noonan, Michael J.</creator><creator>Kays, Roland</creator><creator>Fagan, William F.</creator><creator>Sheldon, Daniel</creator><creator>Calabrese, Justin M.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-9356-6518</orcidid><orcidid>https://orcid.org/0000-0003-2433-9052</orcidid><orcidid>https://orcid.org/0000-0002-4257-2432</orcidid><orcidid>https://orcid.org/0000-0003-0575-6408</orcidid><orcidid>https://orcid.org/0000-0003-0142-7340</orcidid><orcidid>https://orcid.org/0000-0002-2947-6665</orcidid><orcidid>https://orcid.org/0000-0003-4512-0535</orcidid></search><sort><creationdate>202205</creationdate><title>Population‐level inference for home‐range areas</title><author>Fleming, Christen H. ; Deznabi, Iman ; Alavi, Shauhin ; Crofoot, Margaret C. ; Hirsch, Ben T. ; Medici, E. Patricia ; Noonan, Michael J. ; Kays, Roland ; Fagan, William F. ; Sheldon, Daniel ; Calabrese, Justin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3575-59631e58054a152c239148d17afd759f4883cabdad9a1d176d1d28c912f3b04d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>animal movement</topic><topic>Autocorrelation</topic><topic>Comparative analysis</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Environmental quality</topic><topic>Estimates</topic><topic>Home range</topic><topic>Inference</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Monkeys</topic><topic>Population</topic><topic>Population (statistical)</topic><topic>population ecology</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Christen H.</creatorcontrib><creatorcontrib>Deznabi, Iman</creatorcontrib><creatorcontrib>Alavi, Shauhin</creatorcontrib><creatorcontrib>Crofoot, Margaret C.</creatorcontrib><creatorcontrib>Hirsch, Ben T.</creatorcontrib><creatorcontrib>Medici, E. Patricia</creatorcontrib><creatorcontrib>Noonan, Michael J.</creatorcontrib><creatorcontrib>Kays, Roland</creatorcontrib><creatorcontrib>Fagan, William F.</creatorcontrib><creatorcontrib>Sheldon, Daniel</creatorcontrib><creatorcontrib>Calabrese, Justin M.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Christen H.</au><au>Deznabi, Iman</au><au>Alavi, Shauhin</au><au>Crofoot, Margaret C.</au><au>Hirsch, Ben T.</au><au>Medici, E. Patricia</au><au>Noonan, Michael J.</au><au>Kays, Roland</au><au>Fagan, William F.</au><au>Sheldon, Daniel</au><au>Calabrese, Justin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population‐level inference for home‐range areas</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2022-05</date><risdate>2022</risdate><volume>13</volume><issue>5</issue><spage>1027</spage><epage>1041</epage><pages>1027-1041</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Home‐range estimates are a common product of animal tracking data, as each range represents the area needed by a given individual. Population‐level inference of home‐range areas—where multiple individual home ranges are considered to be sampled from a population—is also important to evaluate changes over time, space or covariates such as habitat quality or fragmentation, and for comparative analyses of species averages. Population‐level home‐range parameters have traditionally been estimated by first assuming that the input tracking data were sampled independently when calculating home ranges via conventional kernel density estimation (KDE) or minimal convex polygon (MCP) methods, and then assuming that those individual home ranges were measured exactly when calculating the population‐level estimates. This conventional approach does not account for the temporal autocorrelation that is inherent in modern tracking data, nor for the uncertainties of each individual home‐range estimate, which are often large and heterogeneous. Here, we introduce a statistically and computationally efficient framework for the population‐level analysis of home‐range areas, based on autocorrelated kernel density estimation (AKDE), that can account for variable temporal autocorrelation and estimation uncertainty. We apply our method to empirical examples on lowland tapir Tapirus terrestris, kinkajou Potos flavus, white‐nosed coati Nasua narica, white‐faced capuchin monkey Cebus capucinus and spider monkey Ateles geoffroyi, and quantify differences between species, environments and sexes. Our approach allows researchers to more accurately compare different populations with different movement behaviours or sampling schedules while retaining statistical precision and power when individual home‐range uncertainties vary. Finally, we emphasize the estimation of effect sizes when comparing populations, rather than mere significance tests.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.13815</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9356-6518</orcidid><orcidid>https://orcid.org/0000-0003-2433-9052</orcidid><orcidid>https://orcid.org/0000-0002-4257-2432</orcidid><orcidid>https://orcid.org/0000-0003-0575-6408</orcidid><orcidid>https://orcid.org/0000-0003-0142-7340</orcidid><orcidid>https://orcid.org/0000-0002-2947-6665</orcidid><orcidid>https://orcid.org/0000-0003-4512-0535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2022-05, Vol.13 (5), p.1027-1041
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_journals_2659019429
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects animal movement
Autocorrelation
Comparative analysis
Density
Empirical analysis
Environmental quality
Estimates
Home range
Inference
Kernels
Mathematical analysis
Monkeys
Population
Population (statistical)
population ecology
Tracking
Uncertainty
title Population‐level inference for home‐range areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%E2%80%90level%20inference%20for%20home%E2%80%90range%20areas&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Fleming,%20Christen%20H.&rft.date=2022-05&rft.volume=13&rft.issue=5&rft.spage=1027&rft.epage=1041&rft.pages=1027-1041&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13815&rft_dat=%3Cproquest_cross%3E2659019429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2659019429&rft_id=info:pmid/&rfr_iscdi=true