A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection

In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Ohtsubo, Yusuke, Sato, Takuto, Sagawa, Hirohiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ohtsubo, Yusuke
Sato, Takuto
Sagawa, Hirohiko
description In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compared their effectiveness for meters of different shapes and sizes. As a result, we confirmed that the background information-based method can detect the farthest meters regardless of the shape and number of meters, and can stably detect meters with a diameter of 40px.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2658423538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658423538</sourcerecordid><originalsourceid>FETCH-proquest_journals_26584235383</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMgWLR3CLgu1MTUbktVdOFKcVtCm2CL7a8_P4K3N6IHcDPDY95iJiwSUq6SfC3EjMXOdWmaimwjlJIRuxa8hH7UqKl9Gn4m37w4WH4yZJBvQ9bUwvDhGzSOW0BeeIJek2n4cbCoHaGvyaMJ6Mavv2BTq-_OxL-es-V-dykPyYjw8MZR1YHHIUyVyFS4JpXM5X_WGwuiQXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658423538</pqid></control><display><type>article</type><title>A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection</title><source>Free E- Journals</source><creator>Ohtsubo, Yusuke ; Sato, Takuto ; Sagawa, Hirohiko</creator><creatorcontrib>Ohtsubo, Yusuke ; Sato, Takuto ; Sagawa, Hirohiko</creatorcontrib><description>In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compared their effectiveness for meters of different shapes and sizes. As a result, we confirmed that the background information-based method can detect the farthest meters regardless of the shape and number of meters, and can stably detect meters with a diameter of 40px.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Comparative studies ; Inspection</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ohtsubo, Yusuke</creatorcontrib><creatorcontrib>Sato, Takuto</creatorcontrib><creatorcontrib>Sagawa, Hirohiko</creatorcontrib><title>A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection</title><title>arXiv.org</title><description>In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compared their effectiveness for meters of different shapes and sizes. As a result, we confirmed that the background information-based method can detect the farthest meters regardless of the shape and number of meters, and can stably detect meters with a diameter of 40px.</description><subject>Comparative studies</subject><subject>Inspection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkEKwjAURIMgWLR3CLgu1MTUbktVdOFKcVtCm2CL7a8_P4K3N6IHcDPDY95iJiwSUq6SfC3EjMXOdWmaimwjlJIRuxa8hH7UqKl9Gn4m37w4WH4yZJBvQ9bUwvDhGzSOW0BeeIJek2n4cbCoHaGvyaMJ6Mavv2BTq-_OxL-es-V-dykPyYjw8MZR1YHHIUyVyFS4JpXM5X_WGwuiQXk</recordid><startdate>20220424</startdate><enddate>20220424</enddate><creator>Ohtsubo, Yusuke</creator><creator>Sato, Takuto</creator><creator>Sagawa, Hirohiko</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220424</creationdate><title>A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection</title><author>Ohtsubo, Yusuke ; Sato, Takuto ; Sagawa, Hirohiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26584235383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Comparative studies</topic><topic>Inspection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ohtsubo, Yusuke</creatorcontrib><creatorcontrib>Sato, Takuto</creatorcontrib><creatorcontrib>Sagawa, Hirohiko</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohtsubo, Yusuke</au><au>Sato, Takuto</au><au>Sagawa, Hirohiko</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection</atitle><jtitle>arXiv.org</jtitle><date>2022-04-24</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In order to read meter values from a camera on an autonomous inspection robot with positional errors, it is necessary to detect meter regions from the image. In this study, we developed shape-based, texture-based, and background information-based methods as meter area detection techniques and compared their effectiveness for meters of different shapes and sizes. As a result, we confirmed that the background information-based method can detect the farthest meters regardless of the shape and number of meters, and can stably detect meters with a diameter of 40px.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2658423538
source Free E- Journals
subjects Comparative studies
Inspection
title A Comparative Study of Meter Detection Methods for Automated Infrastructure Inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A37%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Comparative%20Study%20of%20Meter%20Detection%20Methods%20for%20Automated%20Infrastructure%20Inspection&rft.jtitle=arXiv.org&rft.au=Ohtsubo,%20Yusuke&rft.date=2022-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2658423538%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658423538&rft_id=info:pmid/&rfr_iscdi=true