Principal element design of garnets to access structure stability and excellent microwave dielectric properties
Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X‐ray, Rietv...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2022-07, Vol.105 (7), p.4805-4814 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4814 |
---|---|
container_issue | 7 |
container_start_page | 4805 |
container_title | Journal of the American Ceramic Society |
container_volume | 105 |
creator | Mei, Hongrong Zhang, Liangbin Chen, Feilong Wang, Zhiguo Rao, Zhenggang Li, Chunchun |
description | Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X‐ray, Rietveld refinement, and microstructural analysis through scanning electron microscopy. A cubic structure with an Ia‐3d space group was confirmed for synthesized compositions. A combination of microwave dielectric properties for both garnets suggested that Ca3MgTiGe3O12 ceramic possessed a much higher quality factor (Q × f) ∼ 84 000 ± 3000 GHz coupled by a higher dielectric constant (εr) ∼ 12.97 ± 0.03, and a smaller temperature coefficient of resonance frequency (τf) ∼ −29.4 ± 1.5 ppm/°C compared to its Zn counterpart (Q × f ∼ 45 000 ± 2000 GHz, εr ∼ 12.84 ± 0.03, and τf ∼ −33.19 ± 1.6 ppm/°C). Such differences in dielectric performances were further explored utilizing packing fraction, ion polarizability, bond valence, Raman, and infrared spectrum to understand structure–property relationship. |
doi_str_mv | 10.1111/jace.18459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658418380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658418380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2319-3607acf1b40f6e925346146746e41e622eff63f77bae8ef24cf5859c1cdab8333</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKsR3HcY5VVf5UCQ5wthxnXblKk2A7QN8el3BmL7srfbOzGoSuKVnQVHc7bWBBJS-qEzSjRUEzVlFximaEEJaVkpFzdBHCLq20knyG-lfvOuMG3WJoYQ9dxA0Et-1wb_FW-w5iwLHH2hgIAYfoRxNHD2nStWtdPGDdNRi-DbTtUb13xvdf-hNw49JFE70zePD9AD46CJfozOo2wNVfn6P3-_Xb6jHbvDw8rZabzLCcVlkuSKmNpTUnVkDFipwLykXJBXAKgjGwVuS2LGsNEizjxhayqAw1ja5lnudzdDPdTdYfI4Sodv3ou2SpmCgkpzKXJFG3E5V-DsGDVYN3e-0PihJ1DFQdA1W_gSaYTvCXa-HwD6mel6v1pPkB3-N6fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658418380</pqid></control><display><type>article</type><title>Principal element design of garnets to access structure stability and excellent microwave dielectric properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mei, Hongrong ; Zhang, Liangbin ; Chen, Feilong ; Wang, Zhiguo ; Rao, Zhenggang ; Li, Chunchun</creator><creatorcontrib>Mei, Hongrong ; Zhang, Liangbin ; Chen, Feilong ; Wang, Zhiguo ; Rao, Zhenggang ; Li, Chunchun</creatorcontrib><description>Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X‐ray, Rietveld refinement, and microstructural analysis through scanning electron microscopy. A cubic structure with an Ia‐3d space group was confirmed for synthesized compositions. A combination of microwave dielectric properties for both garnets suggested that Ca3MgTiGe3O12 ceramic possessed a much higher quality factor (Q × f) ∼ 84 000 ± 3000 GHz coupled by a higher dielectric constant (εr) ∼ 12.97 ± 0.03, and a smaller temperature coefficient of resonance frequency (τf) ∼ −29.4 ± 1.5 ppm/°C compared to its Zn counterpart (Q × f ∼ 45 000 ± 2000 GHz, εr ∼ 12.84 ± 0.03, and τf ∼ −33.19 ± 1.6 ppm/°C). Such differences in dielectric performances were further explored utilizing packing fraction, ion polarizability, bond valence, Raman, and infrared spectrum to understand structure–property relationship.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.18459</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>average electronegativity difference ; ceramic ; Composition ; Dielectric properties ; Electronegativity ; garnet ; Garnets ; Infrared radiation ; Microstructural analysis ; microwave dielectric properties ; Structural analysis ; Structural stability ; Synthesis ; tolerance factor</subject><ispartof>Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4805-4814</ispartof><rights>2022 The American Ceramic Society.</rights><rights>2022 The American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2319-3607acf1b40f6e925346146746e41e622eff63f77bae8ef24cf5859c1cdab8333</citedby><cites>FETCH-LOGICAL-c2319-3607acf1b40f6e925346146746e41e622eff63f77bae8ef24cf5859c1cdab8333</cites><orcidid>0000-0002-3657-5856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.18459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.18459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids></links><search><creatorcontrib>Mei, Hongrong</creatorcontrib><creatorcontrib>Zhang, Liangbin</creatorcontrib><creatorcontrib>Chen, Feilong</creatorcontrib><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Rao, Zhenggang</creatorcontrib><creatorcontrib>Li, Chunchun</creatorcontrib><title>Principal element design of garnets to access structure stability and excellent microwave dielectric properties</title><title>Journal of the American Ceramic Society</title><description>Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X‐ray, Rietveld refinement, and microstructural analysis through scanning electron microscopy. A cubic structure with an Ia‐3d space group was confirmed for synthesized compositions. A combination of microwave dielectric properties for both garnets suggested that Ca3MgTiGe3O12 ceramic possessed a much higher quality factor (Q × f) ∼ 84 000 ± 3000 GHz coupled by a higher dielectric constant (εr) ∼ 12.97 ± 0.03, and a smaller temperature coefficient of resonance frequency (τf) ∼ −29.4 ± 1.5 ppm/°C compared to its Zn counterpart (Q × f ∼ 45 000 ± 2000 GHz, εr ∼ 12.84 ± 0.03, and τf ∼ −33.19 ± 1.6 ppm/°C). Such differences in dielectric performances were further explored utilizing packing fraction, ion polarizability, bond valence, Raman, and infrared spectrum to understand structure–property relationship.</description><subject>average electronegativity difference</subject><subject>ceramic</subject><subject>Composition</subject><subject>Dielectric properties</subject><subject>Electronegativity</subject><subject>garnet</subject><subject>Garnets</subject><subject>Infrared radiation</subject><subject>Microstructural analysis</subject><subject>microwave dielectric properties</subject><subject>Structural analysis</subject><subject>Structural stability</subject><subject>Synthesis</subject><subject>tolerance factor</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkscUNKsR3HcY5VVf5UCQ5wthxnXblKk2A7QN8el3BmL7srfbOzGoSuKVnQVHc7bWBBJS-qEzSjRUEzVlFximaEEJaVkpFzdBHCLq20knyG-lfvOuMG3WJoYQ9dxA0Et-1wb_FW-w5iwLHH2hgIAYfoRxNHD2nStWtdPGDdNRi-DbTtUb13xvdf-hNw49JFE70zePD9AD46CJfozOo2wNVfn6P3-_Xb6jHbvDw8rZabzLCcVlkuSKmNpTUnVkDFipwLykXJBXAKgjGwVuS2LGsNEizjxhayqAw1ja5lnudzdDPdTdYfI4Sodv3ou2SpmCgkpzKXJFG3E5V-DsGDVYN3e-0PihJ1DFQdA1W_gSaYTvCXa-HwD6mel6v1pPkB3-N6fw</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Mei, Hongrong</creator><creator>Zhang, Liangbin</creator><creator>Chen, Feilong</creator><creator>Wang, Zhiguo</creator><creator>Rao, Zhenggang</creator><creator>Li, Chunchun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-3657-5856</orcidid></search><sort><creationdate>202207</creationdate><title>Principal element design of garnets to access structure stability and excellent microwave dielectric properties</title><author>Mei, Hongrong ; Zhang, Liangbin ; Chen, Feilong ; Wang, Zhiguo ; Rao, Zhenggang ; Li, Chunchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2319-3607acf1b40f6e925346146746e41e622eff63f77bae8ef24cf5859c1cdab8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>average electronegativity difference</topic><topic>ceramic</topic><topic>Composition</topic><topic>Dielectric properties</topic><topic>Electronegativity</topic><topic>garnet</topic><topic>Garnets</topic><topic>Infrared radiation</topic><topic>Microstructural analysis</topic><topic>microwave dielectric properties</topic><topic>Structural analysis</topic><topic>Structural stability</topic><topic>Synthesis</topic><topic>tolerance factor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Hongrong</creatorcontrib><creatorcontrib>Zhang, Liangbin</creatorcontrib><creatorcontrib>Chen, Feilong</creatorcontrib><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Rao, Zhenggang</creatorcontrib><creatorcontrib>Li, Chunchun</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Hongrong</au><au>Zhang, Liangbin</au><au>Chen, Feilong</au><au>Wang, Zhiguo</au><au>Rao, Zhenggang</au><au>Li, Chunchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal element design of garnets to access structure stability and excellent microwave dielectric properties</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2022-07</date><risdate>2022</risdate><volume>105</volume><issue>7</issue><spage>4805</spage><epage>4814</epage><pages>4805-4814</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Guided by the tolerance factor and average electronegativity difference, two stable garnets with compositions Ca3BTiGe3O12 (B = Mg, Zn) were designed, synthesized followed by structural, and dielectric characterization. The phase purity and structural characteristics were analyzed using X‐ray, Rietveld refinement, and microstructural analysis through scanning electron microscopy. A cubic structure with an Ia‐3d space group was confirmed for synthesized compositions. A combination of microwave dielectric properties for both garnets suggested that Ca3MgTiGe3O12 ceramic possessed a much higher quality factor (Q × f) ∼ 84 000 ± 3000 GHz coupled by a higher dielectric constant (εr) ∼ 12.97 ± 0.03, and a smaller temperature coefficient of resonance frequency (τf) ∼ −29.4 ± 1.5 ppm/°C compared to its Zn counterpart (Q × f ∼ 45 000 ± 2000 GHz, εr ∼ 12.84 ± 0.03, and τf ∼ −33.19 ± 1.6 ppm/°C). Such differences in dielectric performances were further explored utilizing packing fraction, ion polarizability, bond valence, Raman, and infrared spectrum to understand structure–property relationship.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.18459</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3657-5856</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2022-07, Vol.105 (7), p.4805-4814 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2658418380 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | average electronegativity difference ceramic Composition Dielectric properties Electronegativity garnet Garnets Infrared radiation Microstructural analysis microwave dielectric properties Structural analysis Structural stability Synthesis tolerance factor |
title | Principal element design of garnets to access structure stability and excellent microwave dielectric properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20element%20design%20of%20garnets%20to%20access%20structure%20stability%20and%20excellent%20microwave%20dielectric%20properties&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Mei,%20Hongrong&rft.date=2022-07&rft.volume=105&rft.issue=7&rft.spage=4805&rft.epage=4814&rft.pages=4805-4814&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.18459&rft_dat=%3Cproquest_cross%3E2658418380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658418380&rft_id=info:pmid/&rfr_iscdi=true |