Accurately and automatically simulating hysteresis loops of shape memory alloys

Toward directly simulating pseudo-elastic effects of shape memory alloys, new elastoplastic equations of von Mises type are proposed by correlating the yield surface radius with the yield surface center, thus establishing a new elastoplasticity model characterized by three coupled quantities for iso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Continuum mechanics and thermodynamics 2022-05, Vol.34 (3), p.739-761
Hauptverfasser: Wang, Si-Yu, Zhan, Lin, Bruhns, Otto T., Xiao, Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 3
container_start_page 739
container_title Continuum mechanics and thermodynamics
container_volume 34
creator Wang, Si-Yu
Zhan, Lin
Bruhns, Otto T.
Xiao, Heng
description Toward directly simulating pseudo-elastic effects of shape memory alloys, new elastoplastic equations of von Mises type are proposed by correlating the yield surface radius with the yield surface center, thus establishing a new elastoplasticity model characterized by three coupled quantities for isotropic and anisotropic hardening. Within the framework of conventional macroscopic elastoplasticity, it is demonstrated that the new model can exactly reproduce pseudo-elastic hysteresis effects of shape memory alloys, with no need to characterize any microstructural features of solid–solid phase transitions. To this end, explicit expressions for the three hardening quantities introduced are presented in terms of two single-variable functions. Then, exact closed-form solutions are obtained for the uniaxial stress–strain responses in a loading and a subsequent unloading process, and such responses are shown to give rise to a hysteresis loop shaped just by the foregoing two single-variable functions. As such, hysteresis loops of arbitrary shapes can be simulated in a straightforward and accurate manner simply prescribing two single-variable functions shaping such loops. For the first time, cumbersome and time-consuming procedures both for conducting statistical averaging schemes and for identifying numerous unknown parameters may be bypassed with broad applicability.
doi_str_mv 10.1007/s00161-022-01087-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2658409642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702357504</galeid><sourcerecordid>A702357504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-c56b51c65cce9f7f37b6b73c1fab8f5a8c5677a9628a571e83c47b0e826f978a3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaF7LYfAFA7PRdUgzSadD2tSkXfTfG63gTu7icg_nu_dyALhHcIMg5I8JQsRQCTEuIYKCl_wCrFBF8iipvAQrKAktEeL0GtykdIYZkpSswGFrzBT1aP1c6P5Y6GkMnR5bo31WUttNPk99U5zmNNpoU5sKH8KQiuCKdNKDLTrbhZhp78OcbsGV0z7Zu9--Bh_PT--713J_eHnbbfelIVSMpaGspsgwaoyVjjvCa1ZzYpDTtXBUi2zgXEuGhaYcWUFMxWtoBWZOcqHJGjwse4cYPiebRnUOU-zzSYUZFRWUrMLZtVlcjfZWtb0LY9Qm19F2rQm9dW3WtxxiQjmFVQbwApgYUorWqSG2nY6zQlB9J62WpFVOWv0krXiGyAKlbO4bG_9--Yf6AvMcgaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658409642</pqid></control><display><type>article</type><title>Accurately and automatically simulating hysteresis loops of shape memory alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Si-Yu ; Zhan, Lin ; Bruhns, Otto T. ; Xiao, Heng</creator><creatorcontrib>Wang, Si-Yu ; Zhan, Lin ; Bruhns, Otto T. ; Xiao, Heng</creatorcontrib><description>Toward directly simulating pseudo-elastic effects of shape memory alloys, new elastoplastic equations of von Mises type are proposed by correlating the yield surface radius with the yield surface center, thus establishing a new elastoplasticity model characterized by three coupled quantities for isotropic and anisotropic hardening. Within the framework of conventional macroscopic elastoplasticity, it is demonstrated that the new model can exactly reproduce pseudo-elastic hysteresis effects of shape memory alloys, with no need to characterize any microstructural features of solid–solid phase transitions. To this end, explicit expressions for the three hardening quantities introduced are presented in terms of two single-variable functions. Then, exact closed-form solutions are obtained for the uniaxial stress–strain responses in a loading and a subsequent unloading process, and such responses are shown to give rise to a hysteresis loop shaped just by the foregoing two single-variable functions. As such, hysteresis loops of arbitrary shapes can be simulated in a straightforward and accurate manner simply prescribing two single-variable functions shaping such loops. For the first time, cumbersome and time-consuming procedures both for conducting statistical averaging schemes and for identifying numerous unknown parameters may be bypassed with broad applicability.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-022-01087-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloys ; Analysis ; Classical and Continuum Physics ; Degassing of metals ; Elastoplasticity ; Engineering Thermodynamics ; Hardening ; Heat and Mass Transfer ; Hysteresis loops ; Metals ; Original Article ; Parameter identification ; Phase transitions ; Physics ; Physics and Astronomy ; Shape effects ; Shape memory alloys ; Simulation ; Solid phases ; Structural Materials ; Theoretical and Applied Mechanics</subject><ispartof>Continuum mechanics and thermodynamics, 2022-05, Vol.34 (3), p.739-761</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-c56b51c65cce9f7f37b6b73c1fab8f5a8c5677a9628a571e83c47b0e826f978a3</citedby><cites>FETCH-LOGICAL-c358t-c56b51c65cce9f7f37b6b73c1fab8f5a8c5677a9628a571e83c47b0e826f978a3</cites><orcidid>0000-0002-3639-5353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-022-01087-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-022-01087-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Si-Yu</creatorcontrib><creatorcontrib>Zhan, Lin</creatorcontrib><creatorcontrib>Bruhns, Otto T.</creatorcontrib><creatorcontrib>Xiao, Heng</creatorcontrib><title>Accurately and automatically simulating hysteresis loops of shape memory alloys</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>Toward directly simulating pseudo-elastic effects of shape memory alloys, new elastoplastic equations of von Mises type are proposed by correlating the yield surface radius with the yield surface center, thus establishing a new elastoplasticity model characterized by three coupled quantities for isotropic and anisotropic hardening. Within the framework of conventional macroscopic elastoplasticity, it is demonstrated that the new model can exactly reproduce pseudo-elastic hysteresis effects of shape memory alloys, with no need to characterize any microstructural features of solid–solid phase transitions. To this end, explicit expressions for the three hardening quantities introduced are presented in terms of two single-variable functions. Then, exact closed-form solutions are obtained for the uniaxial stress–strain responses in a loading and a subsequent unloading process, and such responses are shown to give rise to a hysteresis loop shaped just by the foregoing two single-variable functions. As such, hysteresis loops of arbitrary shapes can be simulated in a straightforward and accurate manner simply prescribing two single-variable functions shaping such loops. For the first time, cumbersome and time-consuming procedures both for conducting statistical averaging schemes and for identifying numerous unknown parameters may be bypassed with broad applicability.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Degassing of metals</subject><subject>Elastoplasticity</subject><subject>Engineering Thermodynamics</subject><subject>Hardening</subject><subject>Heat and Mass Transfer</subject><subject>Hysteresis loops</subject><subject>Metals</subject><subject>Original Article</subject><subject>Parameter identification</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Simulation</subject><subject>Solid phases</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcF1x3zaF7LYfAFA7PRdUgzSadD2tSkXfTfG63gTu7icg_nu_dyALhHcIMg5I8JQsRQCTEuIYKCl_wCrFBF8iipvAQrKAktEeL0GtykdIYZkpSswGFrzBT1aP1c6P5Y6GkMnR5bo31WUttNPk99U5zmNNpoU5sKH8KQiuCKdNKDLTrbhZhp78OcbsGV0z7Zu9--Bh_PT--713J_eHnbbfelIVSMpaGspsgwaoyVjjvCa1ZzYpDTtXBUi2zgXEuGhaYcWUFMxWtoBWZOcqHJGjwse4cYPiebRnUOU-zzSYUZFRWUrMLZtVlcjfZWtb0LY9Qm19F2rQm9dW3WtxxiQjmFVQbwApgYUorWqSG2nY6zQlB9J62WpFVOWv0krXiGyAKlbO4bG_9--Yf6AvMcgaY</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Wang, Si-Yu</creator><creator>Zhan, Lin</creator><creator>Bruhns, Otto T.</creator><creator>Xiao, Heng</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3639-5353</orcidid></search><sort><creationdate>20220501</creationdate><title>Accurately and automatically simulating hysteresis loops of shape memory alloys</title><author>Wang, Si-Yu ; Zhan, Lin ; Bruhns, Otto T. ; Xiao, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-c56b51c65cce9f7f37b6b73c1fab8f5a8c5677a9628a571e83c47b0e826f978a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Degassing of metals</topic><topic>Elastoplasticity</topic><topic>Engineering Thermodynamics</topic><topic>Hardening</topic><topic>Heat and Mass Transfer</topic><topic>Hysteresis loops</topic><topic>Metals</topic><topic>Original Article</topic><topic>Parameter identification</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Simulation</topic><topic>Solid phases</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Si-Yu</creatorcontrib><creatorcontrib>Zhan, Lin</creatorcontrib><creatorcontrib>Bruhns, Otto T.</creatorcontrib><creatorcontrib>Xiao, Heng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Si-Yu</au><au>Zhan, Lin</au><au>Bruhns, Otto T.</au><au>Xiao, Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurately and automatically simulating hysteresis loops of shape memory alloys</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>34</volume><issue>3</issue><spage>739</spage><epage>761</epage><pages>739-761</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>Toward directly simulating pseudo-elastic effects of shape memory alloys, new elastoplastic equations of von Mises type are proposed by correlating the yield surface radius with the yield surface center, thus establishing a new elastoplasticity model characterized by three coupled quantities for isotropic and anisotropic hardening. Within the framework of conventional macroscopic elastoplasticity, it is demonstrated that the new model can exactly reproduce pseudo-elastic hysteresis effects of shape memory alloys, with no need to characterize any microstructural features of solid–solid phase transitions. To this end, explicit expressions for the three hardening quantities introduced are presented in terms of two single-variable functions. Then, exact closed-form solutions are obtained for the uniaxial stress–strain responses in a loading and a subsequent unloading process, and such responses are shown to give rise to a hysteresis loop shaped just by the foregoing two single-variable functions. As such, hysteresis loops of arbitrary shapes can be simulated in a straightforward and accurate manner simply prescribing two single-variable functions shaping such loops. For the first time, cumbersome and time-consuming procedures both for conducting statistical averaging schemes and for identifying numerous unknown parameters may be bypassed with broad applicability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-022-01087-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3639-5353</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-1175
ispartof Continuum mechanics and thermodynamics, 2022-05, Vol.34 (3), p.739-761
issn 0935-1175
1432-0959
language eng
recordid cdi_proquest_journals_2658409642
source SpringerLink Journals - AutoHoldings
subjects Alloys
Analysis
Classical and Continuum Physics
Degassing of metals
Elastoplasticity
Engineering Thermodynamics
Hardening
Heat and Mass Transfer
Hysteresis loops
Metals
Original Article
Parameter identification
Phase transitions
Physics
Physics and Astronomy
Shape effects
Shape memory alloys
Simulation
Solid phases
Structural Materials
Theoretical and Applied Mechanics
title Accurately and automatically simulating hysteresis loops of shape memory alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T10%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurately%20and%20automatically%20simulating%20hysteresis%20loops%20of%20shape%20memory%20alloys&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Wang,%20Si-Yu&rft.date=2022-05-01&rft.volume=34&rft.issue=3&rft.spage=739&rft.epage=761&rft.pages=739-761&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-022-01087-7&rft_dat=%3Cgale_proqu%3EA702357504%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658409642&rft_id=info:pmid/&rft_galeid=A702357504&rfr_iscdi=true