Efficient Multi-Scale Feature Fusion for Image Manipulation Detection

Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2022/05/01, Vol.E105.D(5), pp.1107-1111
Hauptverfasser: ZHANG, Yuxue, FENG, Guorui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1111
container_issue 5
container_start_page 1107
container_title IEICE Transactions on Information and Systems
container_volume E105.D
creator ZHANG, Yuxue
FENG, Guorui
description Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.
doi_str_mv 10.1587/transinf.2021EDL8099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658325103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658325103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwBhwicU7xxnXsHFGbQqVWSPycLcdZg6s0KbZz4O1JVSg97Wg136x2CLkFOgEuxX30ug2utZOMZlDOV5IWxRkZgZjyFFgO52REC8hTyVl2Sa5C2FAKMgM-ImVprTMO25is-ya69NXoBpMF6tj7YfbBdW1iO58st_oDk7Vu3a5vdNyv5xjR7NU1ubC6CXjzO8fkfVG-zZ7S1fPjcvawSs2Us5gyoWtq66pAhkgNyEpIIa2uOEBlC9Ba02pwcl5kQiIAs1pQWoPB2ooc2ZjcHXJ3vvvqMUS16XrfDidVlnPJMg6UDa7pwWV8F4JHq3bebbX_VkDVvjD1V5g6KWzAXg7YJsTh1SOkfXSmwX-oBMrVXPE_cRJyNJtP7RW27AfOyn4O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658325103</pqid></control><display><type>article</type><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ZHANG, Yuxue ; FENG, Guorui</creator><creatorcontrib>ZHANG, Yuxue ; FENG, Guorui</creatorcontrib><description>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2021EDL8099</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Artificial neural networks ; convolutional neural network ; high-pass filter ; Image classification ; Image filters ; Image manipulation ; image manipulation detection ; multi-scale feature fusion</subject><ispartof>IEICE Transactions on Information and Systems, 2022/05/01, Vol.E105.D(5), pp.1107-1111</ispartof><rights>2022 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</citedby><cites>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>ZHANG, Yuxue</creatorcontrib><creatorcontrib>FENG, Guorui</creatorcontrib><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</description><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>high-pass filter</subject><subject>Image classification</subject><subject>Image filters</subject><subject>Image manipulation</subject><subject>image manipulation detection</subject><subject>multi-scale feature fusion</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwBhwicU7xxnXsHFGbQqVWSPycLcdZg6s0KbZz4O1JVSg97Wg136x2CLkFOgEuxX30ug2utZOMZlDOV5IWxRkZgZjyFFgO52REC8hTyVl2Sa5C2FAKMgM-ImVprTMO25is-ya69NXoBpMF6tj7YfbBdW1iO58st_oDk7Vu3a5vdNyv5xjR7NU1ubC6CXjzO8fkfVG-zZ7S1fPjcvawSs2Us5gyoWtq66pAhkgNyEpIIa2uOEBlC9Ba02pwcl5kQiIAs1pQWoPB2ooc2ZjcHXJ3vvvqMUS16XrfDidVlnPJMg6UDa7pwWV8F4JHq3bebbX_VkDVvjD1V5g6KWzAXg7YJsTh1SOkfXSmwX-oBMrVXPE_cRJyNJtP7RW27AfOyn4O</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>ZHANG, Yuxue</creator><creator>FENG, Guorui</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220501</creationdate><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><author>ZHANG, Yuxue ; FENG, Guorui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>high-pass filter</topic><topic>Image classification</topic><topic>Image filters</topic><topic>Image manipulation</topic><topic>image manipulation detection</topic><topic>multi-scale feature fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Yuxue</creatorcontrib><creatorcontrib>FENG, Guorui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Yuxue</au><au>FENG, Guorui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>E105.D</volume><issue>5</issue><spage>1107</spage><epage>1111</epage><pages>1107-1111</pages><artnum>2021EDL8099</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2021EDL8099</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2022/05/01, Vol.E105.D(5), pp.1107-1111
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_journals_2658325103
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
convolutional neural network
high-pass filter
Image classification
Image filters
Image manipulation
image manipulation detection
multi-scale feature fusion
title Efficient Multi-Scale Feature Fusion for Image Manipulation Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multi-Scale%20Feature%20Fusion%20for%20Image%20Manipulation%20Detection&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=ZHANG,%20Yuxue&rft.date=2022-05-01&rft.volume=E105.D&rft.issue=5&rft.spage=1107&rft.epage=1111&rft.pages=1107-1111&rft.artnum=2021EDL8099&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2021EDL8099&rft_dat=%3Cproquest_cross%3E2658325103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658325103&rft_id=info:pmid/&rfr_iscdi=true