Efficient Multi-Scale Feature Fusion for Image Manipulation Detection
Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the m...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2022/05/01, Vol.E105.D(5), pp.1107-1111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1111 |
---|---|
container_issue | 5 |
container_start_page | 1107 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E105.D |
creator | ZHANG, Yuxue FENG, Guorui |
description | Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches. |
doi_str_mv | 10.1587/transinf.2021EDL8099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658325103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658325103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwBhwicU7xxnXsHFGbQqVWSPycLcdZg6s0KbZz4O1JVSg97Wg136x2CLkFOgEuxX30ug2utZOMZlDOV5IWxRkZgZjyFFgO52REC8hTyVl2Sa5C2FAKMgM-ImVprTMO25is-ya69NXoBpMF6tj7YfbBdW1iO58st_oDk7Vu3a5vdNyv5xjR7NU1ubC6CXjzO8fkfVG-zZ7S1fPjcvawSs2Us5gyoWtq66pAhkgNyEpIIa2uOEBlC9Ba02pwcl5kQiIAs1pQWoPB2ooc2ZjcHXJ3vvvqMUS16XrfDidVlnPJMg6UDa7pwWV8F4JHq3bebbX_VkDVvjD1V5g6KWzAXg7YJsTh1SOkfXSmwX-oBMrVXPE_cRJyNJtP7RW27AfOyn4O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658325103</pqid></control><display><type>article</type><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ZHANG, Yuxue ; FENG, Guorui</creator><creatorcontrib>ZHANG, Yuxue ; FENG, Guorui</creatorcontrib><description>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2021EDL8099</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Artificial neural networks ; convolutional neural network ; high-pass filter ; Image classification ; Image filters ; Image manipulation ; image manipulation detection ; multi-scale feature fusion</subject><ispartof>IEICE Transactions on Information and Systems, 2022/05/01, Vol.E105.D(5), pp.1107-1111</ispartof><rights>2022 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</citedby><cites>FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>ZHANG, Yuxue</creatorcontrib><creatorcontrib>FENG, Guorui</creatorcontrib><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</description><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>high-pass filter</subject><subject>Image classification</subject><subject>Image filters</subject><subject>Image manipulation</subject><subject>image manipulation detection</subject><subject>multi-scale feature fusion</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwBhwicU7xxnXsHFGbQqVWSPycLcdZg6s0KbZz4O1JVSg97Wg136x2CLkFOgEuxX30ug2utZOMZlDOV5IWxRkZgZjyFFgO52REC8hTyVl2Sa5C2FAKMgM-ImVprTMO25is-ya69NXoBpMF6tj7YfbBdW1iO58st_oDk7Vu3a5vdNyv5xjR7NU1ubC6CXjzO8fkfVG-zZ7S1fPjcvawSs2Us5gyoWtq66pAhkgNyEpIIa2uOEBlC9Ba02pwcl5kQiIAs1pQWoPB2ooc2ZjcHXJ3vvvqMUS16XrfDidVlnPJMg6UDa7pwWV8F4JHq3bebbX_VkDVvjD1V5g6KWzAXg7YJsTh1SOkfXSmwX-oBMrVXPE_cRJyNJtP7RW27AfOyn4O</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>ZHANG, Yuxue</creator><creator>FENG, Guorui</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220501</creationdate><title>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</title><author>ZHANG, Yuxue ; FENG, Guorui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-37ad0fdb9e3ee0c18b7878fab511bf91aaa0b453559278e113fa700d1cedf76e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>high-pass filter</topic><topic>Image classification</topic><topic>Image filters</topic><topic>Image manipulation</topic><topic>image manipulation detection</topic><topic>multi-scale feature fusion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Yuxue</creatorcontrib><creatorcontrib>FENG, Guorui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Yuxue</au><au>FENG, Guorui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multi-Scale Feature Fusion for Image Manipulation Detection</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2022-05-01</date><risdate>2022</risdate><volume>E105.D</volume><issue>5</issue><spage>1107</spage><epage>1111</epage><pages>1107-1111</pages><artnum>2021EDL8099</artnum><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2021EDL8099</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2022/05/01, Vol.E105.D(5), pp.1107-1111 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2658325103 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks convolutional neural network high-pass filter Image classification Image filters Image manipulation image manipulation detection multi-scale feature fusion |
title | Efficient Multi-Scale Feature Fusion for Image Manipulation Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multi-Scale%20Feature%20Fusion%20for%20Image%20Manipulation%20Detection&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=ZHANG,%20Yuxue&rft.date=2022-05-01&rft.volume=E105.D&rft.issue=5&rft.spage=1107&rft.epage=1111&rft.pages=1107-1111&rft.artnum=2021EDL8099&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2021EDL8099&rft_dat=%3Cproquest_cross%3E2658325103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658325103&rft_id=info:pmid/&rfr_iscdi=true |