Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy
We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibratio...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Chemical Society of Japan 2022-03, Vol.95 (3), p.381-388 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 3 |
container_start_page | 381 |
container_title | Bulletin of the Chemical Society of Japan |
container_volume | 95 |
creator | Saigo, Masaki Shimoda, Yuushi Ehara, Takumi Ryu, Tomohiro Miyata, Kiyoshi Onda, Ken |
description | We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs. |
doi_str_mv | 10.1246/bcsj.20210403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658294013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658294013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</originalsourceid><addsrcrecordid>eNptkE9P3DAUxK2qlbpQjtwt9RzwvyROb2iBggRCapdz9OJ96XrljVPbQQ1fhS-LVwvi0tPoSb-ZeRpCTjk740JV552J2zPBBGeKyU9kwaXSBauk-kwWjLGmEFUtv5KjGLf51KVqFuRluYEAJmGwz5CsH6jv6dU_YxOu6e8ECSO1AwV6P7lkR4fFL4x-gMFgsZpHpKsNhh04N9MLk-wT7H2X6GDOeu0mHzAazDS99w7N5JA-Rjv8oSu7O2S5p0zeDn2AsK8c0aTgo_Hj_I186cFFPHnTY_J4fbVa3hR3Dz9vlxd3hZFapKJqaqFBl7UuuRJrLrtqzcseuw4MyFphJ-sSesCq7JvKNEb1WmOjTc20UJk_Jt8PuWPwfyeMqd36KQy5shVVqUWjGJeZKg6Uye_FgH07BruDMLectfv92_3-7fv-mf_xxm9wZ01O88ZimrcwwvDR8H_zK9bxkBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658294013</pqid></control><display><type>article</type><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</creator><creatorcontrib>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</creatorcontrib><description>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</description><identifier>ISSN: 0009-2673</identifier><identifier>EISSN: 1348-0634</identifier><identifier>DOI: 10.1246/bcsj.20210403</identifier><language>eng</language><publisher>Tokyo: The Chemical Society of Japan</publisher><subject>Coupling (molecular) ; Density functional theory ; Excitation ; Fluorescence ; Infrared spectroscopy ; Mathematical analysis ; Molecular orbitals ; Resonance ; Spectrum analysis ; Spin-orbit interactions ; Vibrational spectra</subject><ispartof>Bulletin of the Chemical Society of Japan, 2022-03, Vol.95 (3), p.381-388</ispartof><rights>The Chemical Society of Japan</rights><rights>Copyright Chemical Society of Japan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</citedby><cites>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saigo, Masaki</creatorcontrib><creatorcontrib>Shimoda, Yuushi</creatorcontrib><creatorcontrib>Ehara, Takumi</creatorcontrib><creatorcontrib>Ryu, Tomohiro</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><title>Bulletin of the Chemical Society of Japan</title><description>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</description><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Resonance</subject><subject>Spectrum analysis</subject><subject>Spin-orbit interactions</subject><subject>Vibrational spectra</subject><issn>0009-2673</issn><issn>1348-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE9P3DAUxK2qlbpQjtwt9RzwvyROb2iBggRCapdz9OJ96XrljVPbQQ1fhS-LVwvi0tPoSb-ZeRpCTjk740JV552J2zPBBGeKyU9kwaXSBauk-kwWjLGmEFUtv5KjGLf51KVqFuRluYEAJmGwz5CsH6jv6dU_YxOu6e8ECSO1AwV6P7lkR4fFL4x-gMFgsZpHpKsNhh04N9MLk-wT7H2X6GDOeu0mHzAazDS99w7N5JA-Rjv8oSu7O2S5p0zeDn2AsK8c0aTgo_Hj_I186cFFPHnTY_J4fbVa3hR3Dz9vlxd3hZFapKJqaqFBl7UuuRJrLrtqzcseuw4MyFphJ-sSesCq7JvKNEb1WmOjTc20UJk_Jt8PuWPwfyeMqd36KQy5shVVqUWjGJeZKg6Uye_FgH07BruDMLectfv92_3-7fv-mf_xxm9wZ01O88ZimrcwwvDR8H_zK9bxkBg</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Saigo, Masaki</creator><creator>Shimoda, Yuushi</creator><creator>Ehara, Takumi</creator><creator>Ryu, Tomohiro</creator><creator>Miyata, Kiyoshi</creator><creator>Onda, Ken</creator><general>The Chemical Society of Japan</general><general>Chemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220315</creationdate><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><author>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Resonance</topic><topic>Spectrum analysis</topic><topic>Spin-orbit interactions</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saigo, Masaki</creatorcontrib><creatorcontrib>Shimoda, Yuushi</creatorcontrib><creatorcontrib>Ehara, Takumi</creatorcontrib><creatorcontrib>Ryu, Tomohiro</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Bulletin of the Chemical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saigo, Masaki</au><au>Shimoda, Yuushi</au><au>Ehara, Takumi</au><au>Ryu, Tomohiro</au><au>Miyata, Kiyoshi</au><au>Onda, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</atitle><jtitle>Bulletin of the Chemical Society of Japan</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>95</volume><issue>3</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0009-2673</issn><eissn>1348-0634</eissn><abstract>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</abstract><cop>Tokyo</cop><pub>The Chemical Society of Japan</pub><doi>10.1246/bcsj.20210403</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2673 |
ispartof | Bulletin of the Chemical Society of Japan, 2022-03, Vol.95 (3), p.381-388 |
issn | 0009-2673 1348-0634 |
language | eng |
recordid | cdi_proquest_journals_2658294013 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Coupling (molecular) Density functional theory Excitation Fluorescence Infrared spectroscopy Mathematical analysis Molecular orbitals Resonance Spectrum analysis Spin-orbit interactions Vibrational spectra |
title | Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Excited%20States%20in%20a%20Multiple-Resonance-Type%20Thermally%20Activated%20Delayed%20Fluorescence%20Molecule%20Using%20Time-Resolved%20Infrared%20Spectroscopy&rft.jtitle=Bulletin%20of%20the%20Chemical%20Society%20of%20Japan&rft.au=Saigo,%20Masaki&rft.date=2022-03-15&rft.volume=95&rft.issue=3&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0009-2673&rft.eissn=1348-0634&rft_id=info:doi/10.1246/bcsj.20210403&rft_dat=%3Cproquest_cross%3E2658294013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658294013&rft_id=info:pmid/&rfr_iscdi=true |