Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy

We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Chemical Society of Japan 2022-03, Vol.95 (3), p.381-388
Hauptverfasser: Saigo, Masaki, Shimoda, Yuushi, Ehara, Takumi, Ryu, Tomohiro, Miyata, Kiyoshi, Onda, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 381
container_title Bulletin of the Chemical Society of Japan
container_volume 95
creator Saigo, Masaki
Shimoda, Yuushi
Ehara, Takumi
Ryu, Tomohiro
Miyata, Kiyoshi
Onda, Ken
description We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.
doi_str_mv 10.1246/bcsj.20210403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658294013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658294013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</originalsourceid><addsrcrecordid>eNptkE9P3DAUxK2qlbpQjtwt9RzwvyROb2iBggRCapdz9OJ96XrljVPbQQ1fhS-LVwvi0tPoSb-ZeRpCTjk740JV552J2zPBBGeKyU9kwaXSBauk-kwWjLGmEFUtv5KjGLf51KVqFuRluYEAJmGwz5CsH6jv6dU_YxOu6e8ECSO1AwV6P7lkR4fFL4x-gMFgsZpHpKsNhh04N9MLk-wT7H2X6GDOeu0mHzAazDS99w7N5JA-Rjv8oSu7O2S5p0zeDn2AsK8c0aTgo_Hj_I186cFFPHnTY_J4fbVa3hR3Dz9vlxd3hZFapKJqaqFBl7UuuRJrLrtqzcseuw4MyFphJ-sSesCq7JvKNEb1WmOjTc20UJk_Jt8PuWPwfyeMqd36KQy5shVVqUWjGJeZKg6Uye_FgH07BruDMLectfv92_3-7fv-mf_xxm9wZ01O88ZimrcwwvDR8H_zK9bxkBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658294013</pqid></control><display><type>article</type><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</creator><creatorcontrib>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</creatorcontrib><description>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</description><identifier>ISSN: 0009-2673</identifier><identifier>EISSN: 1348-0634</identifier><identifier>DOI: 10.1246/bcsj.20210403</identifier><language>eng</language><publisher>Tokyo: The Chemical Society of Japan</publisher><subject>Coupling (molecular) ; Density functional theory ; Excitation ; Fluorescence ; Infrared spectroscopy ; Mathematical analysis ; Molecular orbitals ; Resonance ; Spectrum analysis ; Spin-orbit interactions ; Vibrational spectra</subject><ispartof>Bulletin of the Chemical Society of Japan, 2022-03, Vol.95 (3), p.381-388</ispartof><rights>The Chemical Society of Japan</rights><rights>Copyright Chemical Society of Japan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</citedby><cites>FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saigo, Masaki</creatorcontrib><creatorcontrib>Shimoda, Yuushi</creatorcontrib><creatorcontrib>Ehara, Takumi</creatorcontrib><creatorcontrib>Ryu, Tomohiro</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><title>Bulletin of the Chemical Society of Japan</title><description>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</description><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Excitation</subject><subject>Fluorescence</subject><subject>Infrared spectroscopy</subject><subject>Mathematical analysis</subject><subject>Molecular orbitals</subject><subject>Resonance</subject><subject>Spectrum analysis</subject><subject>Spin-orbit interactions</subject><subject>Vibrational spectra</subject><issn>0009-2673</issn><issn>1348-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkE9P3DAUxK2qlbpQjtwt9RzwvyROb2iBggRCapdz9OJ96XrljVPbQQ1fhS-LVwvi0tPoSb-ZeRpCTjk740JV552J2zPBBGeKyU9kwaXSBauk-kwWjLGmEFUtv5KjGLf51KVqFuRluYEAJmGwz5CsH6jv6dU_YxOu6e8ECSO1AwV6P7lkR4fFL4x-gMFgsZpHpKsNhh04N9MLk-wT7H2X6GDOeu0mHzAazDS99w7N5JA-Rjv8oSu7O2S5p0zeDn2AsK8c0aTgo_Hj_I186cFFPHnTY_J4fbVa3hR3Dz9vlxd3hZFapKJqaqFBl7UuuRJrLrtqzcseuw4MyFphJ-sSesCq7JvKNEb1WmOjTc20UJk_Jt8PuWPwfyeMqd36KQy5shVVqUWjGJeZKg6Uye_FgH07BruDMLectfv92_3-7fv-mf_xxm9wZ01O88ZimrcwwvDR8H_zK9bxkBg</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Saigo, Masaki</creator><creator>Shimoda, Yuushi</creator><creator>Ehara, Takumi</creator><creator>Ryu, Tomohiro</creator><creator>Miyata, Kiyoshi</creator><creator>Onda, Ken</creator><general>The Chemical Society of Japan</general><general>Chemical Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220315</creationdate><title>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</title><author>Saigo, Masaki ; Shimoda, Yuushi ; Ehara, Takumi ; Ryu, Tomohiro ; Miyata, Kiyoshi ; Onda, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-69728a85785142d13b6d15febbaca374eb375afae65f96c9c4f88e98c70824d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Excitation</topic><topic>Fluorescence</topic><topic>Infrared spectroscopy</topic><topic>Mathematical analysis</topic><topic>Molecular orbitals</topic><topic>Resonance</topic><topic>Spectrum analysis</topic><topic>Spin-orbit interactions</topic><topic>Vibrational spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saigo, Masaki</creatorcontrib><creatorcontrib>Shimoda, Yuushi</creatorcontrib><creatorcontrib>Ehara, Takumi</creatorcontrib><creatorcontrib>Ryu, Tomohiro</creatorcontrib><creatorcontrib>Miyata, Kiyoshi</creatorcontrib><creatorcontrib>Onda, Ken</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Bulletin of the Chemical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saigo, Masaki</au><au>Shimoda, Yuushi</au><au>Ehara, Takumi</au><au>Ryu, Tomohiro</au><au>Miyata, Kiyoshi</au><au>Onda, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy</atitle><jtitle>Bulletin of the Chemical Society of Japan</jtitle><date>2022-03-15</date><risdate>2022</risdate><volume>95</volume><issue>3</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0009-2673</issn><eissn>1348-0634</eissn><abstract>We investigated the correlation between the photophysical properties and detailed excited-state characteristics of a multiple-resonance-type thermally activated delayed fluorescence (TADF) molecule, DABNA-1, using time-resolved infrared vibrational spectroscopy. By comparing the distinctive vibrational spectra in the fingerprint region (1000–1700 cm−1) to the simulated spectra, we found the optimal calculation conditions for density functional theory calculations to retrieve the vibrational spectra. Based on the calculations, the excited-state geometries and molecular orbitals in the lowest excited singlet (S1) and triplet (T1) states, as well as the ground state (S0), were determined. Consequently, we revealed that the similarity between the potential surfaces of T1 and S0 suppressed non-radiative decay and improved the high fluorescence quantum yield via TADF. Furthermore, we calculated the spin-orbit coupling matrix elements (SOCMEs) considering the experimentally confirmed geometries, and revealed that twisting of the main skeleton increases the SOCMEs.</abstract><cop>Tokyo</cop><pub>The Chemical Society of Japan</pub><doi>10.1246/bcsj.20210403</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2673
ispartof Bulletin of the Chemical Society of Japan, 2022-03, Vol.95 (3), p.381-388
issn 0009-2673
1348-0634
language eng
recordid cdi_proquest_journals_2658294013
source Oxford University Press Journals All Titles (1996-Current)
subjects Coupling (molecular)
Density functional theory
Excitation
Fluorescence
Infrared spectroscopy
Mathematical analysis
Molecular orbitals
Resonance
Spectrum analysis
Spin-orbit interactions
Vibrational spectra
title Characterization of Excited States in a Multiple-Resonance-Type Thermally Activated Delayed Fluorescence Molecule Using Time-Resolved Infrared Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Excited%20States%20in%20a%20Multiple-Resonance-Type%20Thermally%20Activated%20Delayed%20Fluorescence%20Molecule%20Using%20Time-Resolved%20Infrared%20Spectroscopy&rft.jtitle=Bulletin%20of%20the%20Chemical%20Society%20of%20Japan&rft.au=Saigo,%20Masaki&rft.date=2022-03-15&rft.volume=95&rft.issue=3&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0009-2673&rft.eissn=1348-0634&rft_id=info:doi/10.1246/bcsj.20210403&rft_dat=%3Cproquest_cross%3E2658294013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658294013&rft_id=info:pmid/&rfr_iscdi=true