Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction
Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2022-05, Vol.32 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Kang, Wen‐Jing Feng, Yi Li, Zhe Yang, Wen‐Qi Cheng, Chuan‐Qi Shi, Zi‐Zheng Yin, Peng‐Fei Shen, Gu‐Rong Yang, Jing Dong, Cun‐Ku Liu, Hui Ye, Fu‐Xing Du, Xi‐Wen |
description | Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance. |
doi_str_mv | 10.1002/adfm.202112367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658150521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658150521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-cadc109be8c26782a631da397865197d5cc4dd479fe1ef67c250464cfc4ab8c03</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltiTvF1EjsZq9BSpCLETyU2y_UPSpXGwU6LsvEIPCNPQqqiMjLdM3zfPdJB6BLICAih11Lb9YgSCkBjxo_QABiwKCY0Oz5keD1FZyGsCAHO42SAHp9bL8v6-_NrrNpyK1ujceGaxnhcyFZWXWixdR43sx5Z1OXW-CArPOu0d2-mxpOtqzZt6Wr8ZKTahXN0YmUVzMXvHaLFdPJSzKL5w-1dMZ5HKu67IyW1ApIvTaYo4xmVLAYt45xnLIWc61SpROuE59aAsYwrmpKEJcqqRC4zReIhutr_bbx735jQipXb-LqvFJSlGaQkpdBToz2lvAvBGysaX66l7wQQsZtN7GYTh9l6Id8LH2Vlun9oMb6Z3v-5P8esc6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658150521</pqid></control><display><type>article</type><title>Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kang, Wen‐Jing ; Feng, Yi ; Li, Zhe ; Yang, Wen‐Qi ; Cheng, Chuan‐Qi ; Shi, Zi‐Zheng ; Yin, Peng‐Fei ; Shen, Gu‐Rong ; Yang, Jing ; Dong, Cun‐Ku ; Liu, Hui ; Ye, Fu‐Xing ; Du, Xi‐Wen</creator><creatorcontrib>Kang, Wen‐Jing ; Feng, Yi ; Li, Zhe ; Yang, Wen‐Qi ; Cheng, Chuan‐Qi ; Shi, Zi‐Zheng ; Yin, Peng‐Fei ; Shen, Gu‐Rong ; Yang, Jing ; Dong, Cun‐Ku ; Liu, Hui ; Ye, Fu‐Xing ; Du, Xi‐Wen</creatorcontrib><description>Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202112367</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Catalysts ; Catalytic activity ; Copper ; copper catalysts ; Electrodes ; Electrolysis ; Foils ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Materials science ; Plasma spraying ; Sulfuric acid ; Tensile strain</subject><ispartof>Advanced functional materials, 2022-05, Vol.32 (18), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-cadc109be8c26782a631da397865197d5cc4dd479fe1ef67c250464cfc4ab8c03</citedby><cites>FETCH-LOGICAL-c3177-cadc109be8c26782a631da397865197d5cc4dd479fe1ef67c250464cfc4ab8c03</cites><orcidid>0000-0002-2811-147X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202112367$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202112367$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kang, Wen‐Jing</creatorcontrib><creatorcontrib>Feng, Yi</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yang, Wen‐Qi</creatorcontrib><creatorcontrib>Cheng, Chuan‐Qi</creatorcontrib><creatorcontrib>Shi, Zi‐Zheng</creatorcontrib><creatorcontrib>Yin, Peng‐Fei</creatorcontrib><creatorcontrib>Shen, Gu‐Rong</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Dong, Cun‐Ku</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ye, Fu‐Xing</creatorcontrib><creatorcontrib>Du, Xi‐Wen</creatorcontrib><title>Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction</title><title>Advanced functional materials</title><description>Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance.</description><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Copper</subject><subject>copper catalysts</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Foils</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Materials science</subject><subject>Plasma spraying</subject><subject>Sulfuric acid</subject><subject>Tensile strain</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltiTvF1EjsZq9BSpCLETyU2y_UPSpXGwU6LsvEIPCNPQqqiMjLdM3zfPdJB6BLICAih11Lb9YgSCkBjxo_QABiwKCY0Oz5keD1FZyGsCAHO42SAHp9bL8v6-_NrrNpyK1ujceGaxnhcyFZWXWixdR43sx5Z1OXW-CArPOu0d2-mxpOtqzZt6Wr8ZKTahXN0YmUVzMXvHaLFdPJSzKL5w-1dMZ5HKu67IyW1ApIvTaYo4xmVLAYt45xnLIWc61SpROuE59aAsYwrmpKEJcqqRC4zReIhutr_bbx735jQipXb-LqvFJSlGaQkpdBToz2lvAvBGysaX66l7wQQsZtN7GYTh9l6Id8LH2Vlun9oMb6Z3v-5P8esc6c</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Kang, Wen‐Jing</creator><creator>Feng, Yi</creator><creator>Li, Zhe</creator><creator>Yang, Wen‐Qi</creator><creator>Cheng, Chuan‐Qi</creator><creator>Shi, Zi‐Zheng</creator><creator>Yin, Peng‐Fei</creator><creator>Shen, Gu‐Rong</creator><creator>Yang, Jing</creator><creator>Dong, Cun‐Ku</creator><creator>Liu, Hui</creator><creator>Ye, Fu‐Xing</creator><creator>Du, Xi‐Wen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2811-147X</orcidid></search><sort><creationdate>20220501</creationdate><title>Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction</title><author>Kang, Wen‐Jing ; Feng, Yi ; Li, Zhe ; Yang, Wen‐Qi ; Cheng, Chuan‐Qi ; Shi, Zi‐Zheng ; Yin, Peng‐Fei ; Shen, Gu‐Rong ; Yang, Jing ; Dong, Cun‐Ku ; Liu, Hui ; Ye, Fu‐Xing ; Du, Xi‐Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-cadc109be8c26782a631da397865197d5cc4dd479fe1ef67c250464cfc4ab8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Copper</topic><topic>copper catalysts</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Foils</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Materials science</topic><topic>Plasma spraying</topic><topic>Sulfuric acid</topic><topic>Tensile strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Wen‐Jing</creatorcontrib><creatorcontrib>Feng, Yi</creatorcontrib><creatorcontrib>Li, Zhe</creatorcontrib><creatorcontrib>Yang, Wen‐Qi</creatorcontrib><creatorcontrib>Cheng, Chuan‐Qi</creatorcontrib><creatorcontrib>Shi, Zi‐Zheng</creatorcontrib><creatorcontrib>Yin, Peng‐Fei</creatorcontrib><creatorcontrib>Shen, Gu‐Rong</creatorcontrib><creatorcontrib>Yang, Jing</creatorcontrib><creatorcontrib>Dong, Cun‐Ku</creatorcontrib><creatorcontrib>Liu, Hui</creatorcontrib><creatorcontrib>Ye, Fu‐Xing</creatorcontrib><creatorcontrib>Du, Xi‐Wen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Wen‐Jing</au><au>Feng, Yi</au><au>Li, Zhe</au><au>Yang, Wen‐Qi</au><au>Cheng, Chuan‐Qi</au><au>Shi, Zi‐Zheng</au><au>Yin, Peng‐Fei</au><au>Shen, Gu‐Rong</au><au>Yang, Jing</au><au>Dong, Cun‐Ku</au><au>Liu, Hui</au><au>Ye, Fu‐Xing</au><au>Du, Xi‐Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction</atitle><jtitle>Advanced functional materials</jtitle><date>2022-05-01</date><risdate>2022</risdate><volume>32</volume><issue>18</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing low‐cost and high‐activity pH‐universal hydrogen evolution reaction (HER) catalysts is very crucial to the industrialization of water electrolysis. However, the high price, low yield, and poor stability of current HER catalysts make them difficult to meet practical requirements. Herein, a plasma spraying technique is employed to prepare self‐supported Cu catalysts with tensile strain for the first time. The tensile strain upshifts the d‐band of Cu, improves the water dissociation and H* adsorption, eventually improves the intrinsic HER catalytic activity. As such, Cu electrode achieves overpotentials of 182 mV in 0.5 m H2SO4, 261 mV in 1 M PBS, and 121 mV in 1 M KOH at 10 mA cm–2. In addition, Cu electrode also performs well at high current densities, the overpotentials at 1 A cm–2 are much lower than those of Pt foil in acid, neutral, and alkaline solutions.
The Cu electrode prepared by plasma spraying exhibits an excellent pH‐universal HER catalytic activity, superb long‐term stability, and marvelous corrosion resistance. The superb HER activity is attributed to self‐supported porous structure, abundant active sites, tensile strain enhanced intrinsic catalytic activity, and small charge transfer resistance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202112367</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2811-147X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-05, Vol.32 (18), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2658150521 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysts Catalytic activity Copper copper catalysts Electrodes Electrolysis Foils hydrogen evolution reaction Hydrogen evolution reactions Materials science Plasma spraying Sulfuric acid Tensile strain |
title | Strain‐Activated Copper Catalyst for pH‐Universal Hydrogen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%E2%80%90Activated%20Copper%20Catalyst%20for%20pH%E2%80%90Universal%20Hydrogen%20Evolution%20Reaction&rft.jtitle=Advanced%20functional%20materials&rft.au=Kang,%20Wen%E2%80%90Jing&rft.date=2022-05-01&rft.volume=32&rft.issue=18&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202112367&rft_dat=%3Cproquest_cross%3E2658150521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658150521&rft_id=info:pmid/&rfr_iscdi=true |