Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells

Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-05, Vol.134 (20), p.n/a
Hauptverfasser: Desai, Prachi, Rimal, Rahul, Florea, Alexandru, Gumerov, Rustam A., Santi, Marta, Sorokina, Anastasia S., Sahnoun, Sabri E. M., Fischer, Thorsten, Mottaghy, Felix M., Morgenroth, Agnieszka, Mourran, Ahmed, Potemkin, Igor I., Möller, Martin, Singh, Smriti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Desai, Prachi
Rimal, Rahul
Florea, Alexandru
Gumerov, Rustam A.
Santi, Marta
Sorokina, Anastasia S.
Sahnoun, Sabri E. M.
Fischer, Thorsten
Mottaghy, Felix M.
Morgenroth, Agnieszka
Mourran, Ahmed
Potemkin, Igor I.
Möller, Martin
Singh, Smriti
description Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels. Small changes in the elasticity of the inherently soft radiolabeled nanogels show major differences in its in vivo circulation half‐life. Longer circulation life renders a higher possibility for nanogels to accumulate in the tumor microenvironment by enhanced permeation and retention effect.
doi_str_mv 10.1002/ange.202116653
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658148909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658148909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2023-fd7ddb9fb9610c784d0b04c101b78a3bd2e8edbf1b26ec24aa3783e592baa7773</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMltiTrGdD8djFYVSqSpLGJgsO3lpXSVOsZOi_HtSFcHI9JZ77rs6CD1SsqCEsGdld7BghFGaJHF4hWY0ZjQIecyv0YyQKApSFolbdOf9gRCSMC5m6KMYrLE73O8B543yvSlNP-Kuxltlux00Hq_bo-tO4HGxB-NwZlw5NKo3ncWFaQHrEecnVZ1b1m07WMAZNI2_Rze1ajw8_Nw5en_Ji-w12Lyt1tlyE5TT1jCoK15VWtRaJJSUPI0qoklUUkI1T1WoKwYpVLqmmiVQskipkKchxIJppTjn4Rw9XXqnlZ8D-F4eusHZ6aVkSZzSKBVETKnFJVW6znsHtTw60yo3SkrkWZ8865O_-iZAXIAv08D4T1out6v8j_0GRop0dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658148909</pqid></control><display><type>article</type><title>Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells</title><source>Access via Wiley Online Library</source><creator>Desai, Prachi ; Rimal, Rahul ; Florea, Alexandru ; Gumerov, Rustam A. ; Santi, Marta ; Sorokina, Anastasia S. ; Sahnoun, Sabri E. M. ; Fischer, Thorsten ; Mottaghy, Felix M. ; Morgenroth, Agnieszka ; Mourran, Ahmed ; Potemkin, Igor I. ; Möller, Martin ; Singh, Smriti</creator><creatorcontrib>Desai, Prachi ; Rimal, Rahul ; Florea, Alexandru ; Gumerov, Rustam A. ; Santi, Marta ; Sorokina, Anastasia S. ; Sahnoun, Sabri E. M. ; Fischer, Thorsten ; Mottaghy, Felix M. ; Morgenroth, Agnieszka ; Mourran, Ahmed ; Potemkin, Igor I. ; Möller, Martin ; Singh, Smriti</creatorcontrib><description>Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels. Small changes in the elasticity of the inherently soft radiolabeled nanogels show major differences in its in vivo circulation half‐life. Longer circulation life renders a higher possibility for nanogels to accumulate in the tumor microenvironment by enhanced permeation and retention effect.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202116653</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biodistribution ; Blood circulation ; Chemistry ; Elasticity ; Immune system ; Macrophages ; Mathematical models ; Mechanical properties ; Microgels ; Monocytes ; Nanogels ; Phagocytosis ; Radiation ; Radiation damage ; Radiation dosage ; Radiation therapy ; Radioisotopes ; Radiolabeling ; Solid tumors ; Storage modulus ; Toxicity ; Tumor cells ; Tumors ; Tuning</subject><ispartof>Angewandte Chemie, 2022-05, Vol.134 (20), p.n/a</ispartof><rights>2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2023-fd7ddb9fb9610c784d0b04c101b78a3bd2e8edbf1b26ec24aa3783e592baa7773</citedby><cites>FETCH-LOGICAL-c2023-fd7ddb9fb9610c784d0b04c101b78a3bd2e8edbf1b26ec24aa3783e592baa7773</cites><orcidid>0000-0002-3023-580X ; 0000-0002-2164-9912 ; 0000-0003-2471-0739 ; 0000-0003-4214-8129 ; 0000-0003-0923-480X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202116653$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202116653$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Desai, Prachi</creatorcontrib><creatorcontrib>Rimal, Rahul</creatorcontrib><creatorcontrib>Florea, Alexandru</creatorcontrib><creatorcontrib>Gumerov, Rustam A.</creatorcontrib><creatorcontrib>Santi, Marta</creatorcontrib><creatorcontrib>Sorokina, Anastasia S.</creatorcontrib><creatorcontrib>Sahnoun, Sabri E. M.</creatorcontrib><creatorcontrib>Fischer, Thorsten</creatorcontrib><creatorcontrib>Mottaghy, Felix M.</creatorcontrib><creatorcontrib>Morgenroth, Agnieszka</creatorcontrib><creatorcontrib>Mourran, Ahmed</creatorcontrib><creatorcontrib>Potemkin, Igor I.</creatorcontrib><creatorcontrib>Möller, Martin</creatorcontrib><creatorcontrib>Singh, Smriti</creatorcontrib><title>Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells</title><title>Angewandte Chemie</title><description>Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels. Small changes in the elasticity of the inherently soft radiolabeled nanogels show major differences in its in vivo circulation half‐life. Longer circulation life renders a higher possibility for nanogels to accumulate in the tumor microenvironment by enhanced permeation and retention effect.</description><subject>Biodistribution</subject><subject>Blood circulation</subject><subject>Chemistry</subject><subject>Elasticity</subject><subject>Immune system</subject><subject>Macrophages</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microgels</subject><subject>Monocytes</subject><subject>Nanogels</subject><subject>Phagocytosis</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Radiation dosage</subject><subject>Radiation therapy</subject><subject>Radioisotopes</subject><subject>Radiolabeling</subject><subject>Solid tumors</subject><subject>Storage modulus</subject><subject>Toxicity</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Tuning</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAURS0EEqWwMltiTrGdD8djFYVSqSpLGJgsO3lpXSVOsZOi_HtSFcHI9JZ77rs6CD1SsqCEsGdld7BghFGaJHF4hWY0ZjQIecyv0YyQKApSFolbdOf9gRCSMC5m6KMYrLE73O8B543yvSlNP-Kuxltlux00Hq_bo-tO4HGxB-NwZlw5NKo3ncWFaQHrEecnVZ1b1m07WMAZNI2_Rze1ajw8_Nw5en_Ji-w12Lyt1tlyE5TT1jCoK15VWtRaJJSUPI0qoklUUkI1T1WoKwYpVLqmmiVQskipkKchxIJppTjn4Rw9XXqnlZ8D-F4eusHZ6aVkSZzSKBVETKnFJVW6znsHtTw60yo3SkrkWZ8865O_-iZAXIAv08D4T1out6v8j_0GRop0dQ</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Desai, Prachi</creator><creator>Rimal, Rahul</creator><creator>Florea, Alexandru</creator><creator>Gumerov, Rustam A.</creator><creator>Santi, Marta</creator><creator>Sorokina, Anastasia S.</creator><creator>Sahnoun, Sabri E. M.</creator><creator>Fischer, Thorsten</creator><creator>Mottaghy, Felix M.</creator><creator>Morgenroth, Agnieszka</creator><creator>Mourran, Ahmed</creator><creator>Potemkin, Igor I.</creator><creator>Möller, Martin</creator><creator>Singh, Smriti</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3023-580X</orcidid><orcidid>https://orcid.org/0000-0002-2164-9912</orcidid><orcidid>https://orcid.org/0000-0003-2471-0739</orcidid><orcidid>https://orcid.org/0000-0003-4214-8129</orcidid><orcidid>https://orcid.org/0000-0003-0923-480X</orcidid></search><sort><creationdate>20220509</creationdate><title>Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells</title><author>Desai, Prachi ; Rimal, Rahul ; Florea, Alexandru ; Gumerov, Rustam A. ; Santi, Marta ; Sorokina, Anastasia S. ; Sahnoun, Sabri E. M. ; Fischer, Thorsten ; Mottaghy, Felix M. ; Morgenroth, Agnieszka ; Mourran, Ahmed ; Potemkin, Igor I. ; Möller, Martin ; Singh, Smriti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2023-fd7ddb9fb9610c784d0b04c101b78a3bd2e8edbf1b26ec24aa3783e592baa7773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biodistribution</topic><topic>Blood circulation</topic><topic>Chemistry</topic><topic>Elasticity</topic><topic>Immune system</topic><topic>Macrophages</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microgels</topic><topic>Monocytes</topic><topic>Nanogels</topic><topic>Phagocytosis</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Radiation dosage</topic><topic>Radiation therapy</topic><topic>Radioisotopes</topic><topic>Radiolabeling</topic><topic>Solid tumors</topic><topic>Storage modulus</topic><topic>Toxicity</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desai, Prachi</creatorcontrib><creatorcontrib>Rimal, Rahul</creatorcontrib><creatorcontrib>Florea, Alexandru</creatorcontrib><creatorcontrib>Gumerov, Rustam A.</creatorcontrib><creatorcontrib>Santi, Marta</creatorcontrib><creatorcontrib>Sorokina, Anastasia S.</creatorcontrib><creatorcontrib>Sahnoun, Sabri E. M.</creatorcontrib><creatorcontrib>Fischer, Thorsten</creatorcontrib><creatorcontrib>Mottaghy, Felix M.</creatorcontrib><creatorcontrib>Morgenroth, Agnieszka</creatorcontrib><creatorcontrib>Mourran, Ahmed</creatorcontrib><creatorcontrib>Potemkin, Igor I.</creatorcontrib><creatorcontrib>Möller, Martin</creatorcontrib><creatorcontrib>Singh, Smriti</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desai, Prachi</au><au>Rimal, Rahul</au><au>Florea, Alexandru</au><au>Gumerov, Rustam A.</au><au>Santi, Marta</au><au>Sorokina, Anastasia S.</au><au>Sahnoun, Sabri E. M.</au><au>Fischer, Thorsten</au><au>Mottaghy, Felix M.</au><au>Morgenroth, Agnieszka</au><au>Mourran, Ahmed</au><au>Potemkin, Igor I.</au><au>Möller, Martin</au><au>Singh, Smriti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>134</volume><issue>20</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro‐ and hepato‐toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half‐life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37 kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93 kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano‐ or microgels. Small changes in the elasticity of the inherently soft radiolabeled nanogels show major differences in its in vivo circulation half‐life. Longer circulation life renders a higher possibility for nanogels to accumulate in the tumor microenvironment by enhanced permeation and retention effect.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202116653</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3023-580X</orcidid><orcidid>https://orcid.org/0000-0002-2164-9912</orcidid><orcidid>https://orcid.org/0000-0003-2471-0739</orcidid><orcidid>https://orcid.org/0000-0003-4214-8129</orcidid><orcidid>https://orcid.org/0000-0003-0923-480X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-05, Vol.134 (20), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2658148909
source Access via Wiley Online Library
subjects Biodistribution
Blood circulation
Chemistry
Elasticity
Immune system
Macrophages
Mathematical models
Mechanical properties
Microgels
Monocytes
Nanogels
Phagocytosis
Radiation
Radiation damage
Radiation dosage
Radiation therapy
Radioisotopes
Radiolabeling
Solid tumors
Storage modulus
Toxicity
Tumor cells
Tumors
Tuning
title Tuning the Elasticity of Nanogels Improves Their Circulation Time by Evading Immune Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Elasticity%20of%20Nanogels%20Improves%20Their%20Circulation%20Time%20by%20Evading%20Immune%20Cells&rft.jtitle=Angewandte%20Chemie&rft.au=Desai,%20Prachi&rft.date=2022-05-09&rft.volume=134&rft.issue=20&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202116653&rft_dat=%3Cproquest_cross%3E2658148909%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658148909&rft_id=info:pmid/&rfr_iscdi=true