On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation
The energy consumption of massive multiple-input multiple-output (MIMO) systems increases with the number of antennas. Optimizing the energy efficiency (EE) of massive MIMO systems is one of the ways to achieve green communication. This paper proposes an EE optimization method that genetic algorithm...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-04, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Du, Liping Tan, Ying Li, Yiming Chen, Yueyun |
description | The energy consumption of massive multiple-input multiple-output (MIMO) systems increases with the number of antennas. Optimizing the energy efficiency (EE) of massive MIMO systems is one of the ways to achieve green communication. This paper proposes an EE optimization method that genetic algorithm-based antenna selection and power allocation (GA-AS+PA) for the downlink of a multicell massive MIMO system under the restriction of the users’ sum-rate. First, we use the genetic algorithm to determine the active transmitting antenna of each base station (BS). Then, the transmission power for each user is allocated using the convex optimization method. Finally, the EE of system is optimized under the achieved optimum BS’s transmit power and the number of active antennas. From the simulation results, the GA-AS+PA method can improve the EE of the system while meeting user sum-rate requirements, which achieves better performance compared with random antenna selection+equal power allocation method (RAS+EPA), random antenna selection+power allocation method (RAS+PA), the antenna selection method based on genetic algorithm+equal power allocation method (GA-AS+EPA), and equal power allocation (EPA) these four methods. The EE of the proposed GA-AS+PA method is improved by 33.3% compared to the EPA method. |
doi_str_mv | 10.1155/2022/7224731 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2658000431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658000431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-7b95a3b9c658997f52b34e18dcff530350faeab867d5e5f5d7a6149afbfc53203</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKs3P0DAo67Nn82meyxStdClgno1ZLMTm7Jma7K19Nub0uLR0zyGH2_mPYSuKbmnVIgRI4yNJGO55PQEDajgJBsXUp7-6aI8RxcxrgghnDA6QB8Lj_sl4KmH8LnDU2udceDNDncWV5u2dwbaFlc6RvcDuJpVC7x1_RJPfA_ea_wKLZjedR5r3-CXbgsBT9q2M3q_vERnVrcRro5ziN4fp28Pz9l88TR7mMwzw7nsM1mXQvO6NIUYl6W0gtU8BzpujLXpcS6I1aDrlKURIKxopC5oXmpbWyM4I3yIbg6-69B9byD2atVtgk8nFUueKW7OaaLuDpQJXYwBrFoH96XDTlGi9g2qfYPq2GDCbw_40vlGb93_9C_VE29c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2658000431</pqid></control><display><type>article</type><title>On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Du, Liping ; Tan, Ying ; Li, Yiming ; Chen, Yueyun</creator><contributor>Abbasi, Muhammad Inam ; Muhammad Inam Abbasi</contributor><creatorcontrib>Du, Liping ; Tan, Ying ; Li, Yiming ; Chen, Yueyun ; Abbasi, Muhammad Inam ; Muhammad Inam Abbasi</creatorcontrib><description>The energy consumption of massive multiple-input multiple-output (MIMO) systems increases with the number of antennas. Optimizing the energy efficiency (EE) of massive MIMO systems is one of the ways to achieve green communication. This paper proposes an EE optimization method that genetic algorithm-based antenna selection and power allocation (GA-AS+PA) for the downlink of a multicell massive MIMO system under the restriction of the users’ sum-rate. First, we use the genetic algorithm to determine the active transmitting antenna of each base station (BS). Then, the transmission power for each user is allocated using the convex optimization method. Finally, the EE of system is optimized under the achieved optimum BS’s transmit power and the number of active antennas. From the simulation results, the GA-AS+PA method can improve the EE of the system while meeting user sum-rate requirements, which achieves better performance compared with random antenna selection+equal power allocation method (RAS+EPA), random antenna selection+power allocation method (RAS+PA), the antenna selection method based on genetic algorithm+equal power allocation method (GA-AS+EPA), and equal power allocation (EPA) these four methods. The EE of the proposed GA-AS+PA method is improved by 33.3% compared to the EPA method.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/7224731</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Antennas ; Communication ; Computational geometry ; Convexity ; Energy consumption ; Energy efficiency ; Genetic algorithms ; MIMO communication ; Optimization ; Power consumption ; Receivers & amplifiers</subject><ispartof>Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Liping Du et al.</rights><rights>Copyright © 2022 Liping Du et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-7b95a3b9c658997f52b34e18dcff530350faeab867d5e5f5d7a6149afbfc53203</citedby><cites>FETCH-LOGICAL-c337t-7b95a3b9c658997f52b34e18dcff530350faeab867d5e5f5d7a6149afbfc53203</cites><orcidid>0000-0001-7804-962X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Abbasi, Muhammad Inam</contributor><contributor>Muhammad Inam Abbasi</contributor><creatorcontrib>Du, Liping</creatorcontrib><creatorcontrib>Tan, Ying</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Chen, Yueyun</creatorcontrib><title>On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation</title><title>Wireless communications and mobile computing</title><description>The energy consumption of massive multiple-input multiple-output (MIMO) systems increases with the number of antennas. Optimizing the energy efficiency (EE) of massive MIMO systems is one of the ways to achieve green communication. This paper proposes an EE optimization method that genetic algorithm-based antenna selection and power allocation (GA-AS+PA) for the downlink of a multicell massive MIMO system under the restriction of the users’ sum-rate. First, we use the genetic algorithm to determine the active transmitting antenna of each base station (BS). Then, the transmission power for each user is allocated using the convex optimization method. Finally, the EE of system is optimized under the achieved optimum BS’s transmit power and the number of active antennas. From the simulation results, the GA-AS+PA method can improve the EE of the system while meeting user sum-rate requirements, which achieves better performance compared with random antenna selection+equal power allocation method (RAS+EPA), random antenna selection+power allocation method (RAS+PA), the antenna selection method based on genetic algorithm+equal power allocation method (GA-AS+EPA), and equal power allocation (EPA) these four methods. The EE of the proposed GA-AS+PA method is improved by 33.3% compared to the EPA method.</description><subject>Antennas</subject><subject>Communication</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Genetic algorithms</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>Power consumption</subject><subject>Receivers & amplifiers</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKs3P0DAo67Nn82meyxStdClgno1ZLMTm7Jma7K19Nub0uLR0zyGH2_mPYSuKbmnVIgRI4yNJGO55PQEDajgJBsXUp7-6aI8RxcxrgghnDA6QB8Lj_sl4KmH8LnDU2udceDNDncWV5u2dwbaFlc6RvcDuJpVC7x1_RJPfA_ea_wKLZjedR5r3-CXbgsBT9q2M3q_vERnVrcRro5ziN4fp28Pz9l88TR7mMwzw7nsM1mXQvO6NIUYl6W0gtU8BzpujLXpcS6I1aDrlKURIKxopC5oXmpbWyM4I3yIbg6-69B9byD2atVtgk8nFUueKW7OaaLuDpQJXYwBrFoH96XDTlGi9g2qfYPq2GDCbw_40vlGb93_9C_VE29c</recordid><startdate>20220422</startdate><enddate>20220422</enddate><creator>Du, Liping</creator><creator>Tan, Ying</creator><creator>Li, Yiming</creator><creator>Chen, Yueyun</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7804-962X</orcidid></search><sort><creationdate>20220422</creationdate><title>On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation</title><author>Du, Liping ; Tan, Ying ; Li, Yiming ; Chen, Yueyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-7b95a3b9c658997f52b34e18dcff530350faeab867d5e5f5d7a6149afbfc53203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antennas</topic><topic>Communication</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Genetic algorithms</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>Power consumption</topic><topic>Receivers & amplifiers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Liping</creatorcontrib><creatorcontrib>Tan, Ying</creatorcontrib><creatorcontrib>Li, Yiming</creatorcontrib><creatorcontrib>Chen, Yueyun</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Liping</au><au>Tan, Ying</au><au>Li, Yiming</au><au>Chen, Yueyun</au><au>Abbasi, Muhammad Inam</au><au>Muhammad Inam Abbasi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-04-22</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>The energy consumption of massive multiple-input multiple-output (MIMO) systems increases with the number of antennas. Optimizing the energy efficiency (EE) of massive MIMO systems is one of the ways to achieve green communication. This paper proposes an EE optimization method that genetic algorithm-based antenna selection and power allocation (GA-AS+PA) for the downlink of a multicell massive MIMO system under the restriction of the users’ sum-rate. First, we use the genetic algorithm to determine the active transmitting antenna of each base station (BS). Then, the transmission power for each user is allocated using the convex optimization method. Finally, the EE of system is optimized under the achieved optimum BS’s transmit power and the number of active antennas. From the simulation results, the GA-AS+PA method can improve the EE of the system while meeting user sum-rate requirements, which achieves better performance compared with random antenna selection+equal power allocation method (RAS+EPA), random antenna selection+power allocation method (RAS+PA), the antenna selection method based on genetic algorithm+equal power allocation method (GA-AS+EPA), and equal power allocation (EPA) these four methods. The EE of the proposed GA-AS+PA method is improved by 33.3% compared to the EPA method.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/7224731</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7804-962X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-04, Vol.2022, p.1-11 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2658000431 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Antennas Communication Computational geometry Convexity Energy consumption Energy efficiency Genetic algorithms MIMO communication Optimization Power consumption Receivers & amplifiers |
title | On the Energy Efficiency of Multicell Massive MIMO with Antenna Selection and Power Allocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Energy%20Efficiency%20of%20Multicell%20Massive%20MIMO%20with%20Antenna%20Selection%20and%20Power%20Allocation&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Du,%20Liping&rft.date=2022-04-22&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/7224731&rft_dat=%3Cproquest_cross%3E2658000431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2658000431&rft_id=info:pmid/&rfr_iscdi=true |