Effect of silica nanofiller in cross-linked polyethylene as electrical tree growth inhibitor

One of the main phenomena that contributes to the non-success of cable insulation made of cross-linked polyethylene (XLPE) is electrical treeing. To improve the XPLE cable insulation, the use of nanofiller has been introduced. Adding the nanofiller in the based composite offers better cable lifetime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-06, Vol.12 (3), p.2256
Hauptverfasser: Moh Nazar, Nazatul Shiema, Syazwani Mansor, Noor, Khayam, Umar, Asiah Muhamad, Nor, Jaafar Mustapha, Mariatti, Izzani Mohamed, Amir, Mohd Jamil, Mohamad Kamarol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main phenomena that contributes to the non-success of cable insulation made of cross-linked polyethylene (XLPE) is electrical treeing. To improve the XPLE cable insulation, the use of nanofiller has been introduced. Adding the nanofiller in the based composite offers better cable lifetime and resistance to deal with the cable failure. One of the potential nanofillers that can increase the insulation performance of XLPE cable is silica nanofiller. To this extent, the studies on silica nanofiller in XLPE are focusing on the impulse breakdown strength, dielectric loss, permittivity, space charge, alternating current (AC), and partial discharge. The studies reveal that the dielectric properties of the XLPE nanocomposite have significant improvement. Therefore, this work investigates the effect of various concentrations of silica nanofiller in XLPE composite as electrical tree inhibitor. The concentrations of silica nanofiller in XLPE were 0.25 wt%, 0.5 wt%, 0.75 wt%, 1.0 wt%, 1.25 wt%, 1.5 wt%, and 1.75 wt%. The silica nanofillers have 96%-99% purity, 20-30 nm sizes and the shapes are spherical. As a result, the XLPE composite containing 1.5 wt% silica nanofiller demonstrate higher tree inception voltage and detaining the tree propagation speed, which could be considered as an inhibitor medium of electrical tree growth.
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v12i3.pp2256-2263