Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis

Temperature is a paramount factor for shape memory polymer composites (SMPCs) to implement their shape recovery functions and present their high specific stiffness when applied in aerospace deployable structures. However, many existing studies focused on the thermo-mechanics and shape memory behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied composite materials 2022-04, Vol.29 (2), p.473-496
Hauptverfasser: Yang, Tianyang, Chen, Wujun, Hu, Jianhui, Zhao, Bing, Fang, Guangqiang, Peng, Fujun, Cao, Zhengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 2
container_start_page 473
container_title Applied composite materials
container_volume 29
creator Yang, Tianyang
Chen, Wujun
Hu, Jianhui
Zhao, Bing
Fang, Guangqiang
Peng, Fujun
Cao, Zhengli
description Temperature is a paramount factor for shape memory polymer composites (SMPCs) to implement their shape recovery functions and present their high specific stiffness when applied in aerospace deployable structures. However, many existing studies focused on the thermo-mechanics and shape memory behaviors of SMPC were established based on uniform temperature distribution. This work explores the specific characteristics of thermal conduction behaviors of single-ply carbon fiber broken twill weave reinforced thermally induced resin-based SMPCs by multi-scale analysis method. The thermal conductivities are measured by the laser flash analysis (LFA) method, and the results are modified by the specific heat testing results from differential scanning calorimeter (DSC). The periodical dividing areas and multi-scale representative volume elements (RVEs) are developed to elaborate the thermal conduction behavior and uneven temperature distribution of 3–1 twill weave reinforced SMPCs. Through the finite element analysis (FEA) and comparisons, the particularity of twill breaking woven materials compared with other woven materials is shown. By comparing the experimental and numerical results of thermal conductivities, the multi-scale models and analysis of thermal conduction behavior are validated to be effective.
doi_str_mv 10.1007/s10443-021-09977-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2657510187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657510187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d1d867784783c5165323e4c6501150641ed067dc12d15a1cfb74c6df33435d833</originalsourceid><addsrcrecordid>eNp9kdFuFCEUhonRxLX6Al6ReI3CMAwz3rUbq0220bRr9I5QONOhMjDCbDfzbj5c2W6jd15BON__HZIfobeMvmeUyg-Z0brmhFaM0K6TkuyfoRUTkpO67eRztKJd1RHWdj9folc531FKW9nIFfqzHSCN2uN1DHZnZhcDPoNB37uYMo49vnbh1gOZ_ILPUvwFAW_3znv8A_Q94CtwoY_JgMVPosJdHEzl5QqyC-RG53K_HvQE-BLGmBb8LfplhFR2jlPMbob8EV_u_OxINtofsHmIFp8G7ZfsMtbB4k3RJHzudR7-Dl6jF732Gd48nSfo-_mn7foL2Xz9fLE-3RDDWTcTy2zbSNnWsuVGsEbwikNtGkEZE7SpGVjaSGtYZZnQzPQ3skxtz3nNhW05P0Hvjt4pxd87yLO6i7tUPpFV1QgpGGWtLFR1pEyKOSfo1ZTcqNOiGFWHltSxJVVaUo8tqX0J8WMoFzjcQvqn_k_qAdS4mEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657510187</pqid></control><display><type>article</type><title>Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis</title><source>SpringerNature Complete Journals</source><creator>Yang, Tianyang ; Chen, Wujun ; Hu, Jianhui ; Zhao, Bing ; Fang, Guangqiang ; Peng, Fujun ; Cao, Zhengli</creator><creatorcontrib>Yang, Tianyang ; Chen, Wujun ; Hu, Jianhui ; Zhao, Bing ; Fang, Guangqiang ; Peng, Fujun ; Cao, Zhengli</creatorcontrib><description>Temperature is a paramount factor for shape memory polymer composites (SMPCs) to implement their shape recovery functions and present their high specific stiffness when applied in aerospace deployable structures. However, many existing studies focused on the thermo-mechanics and shape memory behaviors of SMPC were established based on uniform temperature distribution. This work explores the specific characteristics of thermal conduction behaviors of single-ply carbon fiber broken twill weave reinforced thermally induced resin-based SMPCs by multi-scale analysis method. The thermal conductivities are measured by the laser flash analysis (LFA) method, and the results are modified by the specific heat testing results from differential scanning calorimeter (DSC). The periodical dividing areas and multi-scale representative volume elements (RVEs) are developed to elaborate the thermal conduction behavior and uneven temperature distribution of 3–1 twill weave reinforced SMPCs. Through the finite element analysis (FEA) and comparisons, the particularity of twill breaking woven materials compared with other woven materials is shown. By comparing the experimental and numerical results of thermal conductivities, the multi-scale models and analysis of thermal conduction behavior are validated to be effective.</description><identifier>ISSN: 0929-189X</identifier><identifier>EISSN: 1573-4897</identifier><identifier>DOI: 10.1007/s10443-021-09977-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Behavior ; Carbon fiber reinforced plastics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Finite element method ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mathematical analysis ; Multiscale analysis ; Polymer matrix composites ; Polymer Sciences ; Polymers ; Resins ; Scale models ; Shape memory ; Stiffness ; Temperature distribution ; Thermodynamics</subject><ispartof>Applied composite materials, 2022-04, Vol.29 (2), p.473-496</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d1d867784783c5165323e4c6501150641ed067dc12d15a1cfb74c6df33435d833</citedby><cites>FETCH-LOGICAL-c319t-d1d867784783c5165323e4c6501150641ed067dc12d15a1cfb74c6df33435d833</cites><orcidid>0000-0001-9573-1452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10443-021-09977-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10443-021-09977-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yang, Tianyang</creatorcontrib><creatorcontrib>Chen, Wujun</creatorcontrib><creatorcontrib>Hu, Jianhui</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Fang, Guangqiang</creatorcontrib><creatorcontrib>Peng, Fujun</creatorcontrib><creatorcontrib>Cao, Zhengli</creatorcontrib><title>Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis</title><title>Applied composite materials</title><addtitle>Appl Compos Mater</addtitle><description>Temperature is a paramount factor for shape memory polymer composites (SMPCs) to implement their shape recovery functions and present their high specific stiffness when applied in aerospace deployable structures. However, many existing studies focused on the thermo-mechanics and shape memory behaviors of SMPC were established based on uniform temperature distribution. This work explores the specific characteristics of thermal conduction behaviors of single-ply carbon fiber broken twill weave reinforced thermally induced resin-based SMPCs by multi-scale analysis method. The thermal conductivities are measured by the laser flash analysis (LFA) method, and the results are modified by the specific heat testing results from differential scanning calorimeter (DSC). The periodical dividing areas and multi-scale representative volume elements (RVEs) are developed to elaborate the thermal conduction behavior and uneven temperature distribution of 3–1 twill weave reinforced SMPCs. Through the finite element analysis (FEA) and comparisons, the particularity of twill breaking woven materials compared with other woven materials is shown. By comparing the experimental and numerical results of thermal conductivities, the multi-scale models and analysis of thermal conduction behavior are validated to be effective.</description><subject>Behavior</subject><subject>Carbon fiber reinforced plastics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Finite element method</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Multiscale analysis</subject><subject>Polymer matrix composites</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Resins</subject><subject>Scale models</subject><subject>Shape memory</subject><subject>Stiffness</subject><subject>Temperature distribution</subject><subject>Thermodynamics</subject><issn>0929-189X</issn><issn>1573-4897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kdFuFCEUhonRxLX6Al6ReI3CMAwz3rUbq0220bRr9I5QONOhMjDCbDfzbj5c2W6jd15BON__HZIfobeMvmeUyg-Z0brmhFaM0K6TkuyfoRUTkpO67eRztKJd1RHWdj9folc531FKW9nIFfqzHSCN2uN1DHZnZhcDPoNB37uYMo49vnbh1gOZ_ILPUvwFAW_3znv8A_Q94CtwoY_JgMVPosJdHEzl5QqyC-RG53K_HvQE-BLGmBb8LfplhFR2jlPMbob8EV_u_OxINtofsHmIFp8G7ZfsMtbB4k3RJHzudR7-Dl6jF732Gd48nSfo-_mn7foL2Xz9fLE-3RDDWTcTy2zbSNnWsuVGsEbwikNtGkEZE7SpGVjaSGtYZZnQzPQ3skxtz3nNhW05P0Hvjt4pxd87yLO6i7tUPpFV1QgpGGWtLFR1pEyKOSfo1ZTcqNOiGFWHltSxJVVaUo8tqX0J8WMoFzjcQvqn_k_qAdS4mEY</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Yang, Tianyang</creator><creator>Chen, Wujun</creator><creator>Hu, Jianhui</creator><creator>Zhao, Bing</creator><creator>Fang, Guangqiang</creator><creator>Peng, Fujun</creator><creator>Cao, Zhengli</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-9573-1452</orcidid></search><sort><creationdate>20220401</creationdate><title>Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis</title><author>Yang, Tianyang ; Chen, Wujun ; Hu, Jianhui ; Zhao, Bing ; Fang, Guangqiang ; Peng, Fujun ; Cao, Zhengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d1d867784783c5165323e4c6501150641ed067dc12d15a1cfb74c6df33435d833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavior</topic><topic>Carbon fiber reinforced plastics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Finite element method</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Multiscale analysis</topic><topic>Polymer matrix composites</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Resins</topic><topic>Scale models</topic><topic>Shape memory</topic><topic>Stiffness</topic><topic>Temperature distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianyang</creatorcontrib><creatorcontrib>Chen, Wujun</creatorcontrib><creatorcontrib>Hu, Jianhui</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Fang, Guangqiang</creatorcontrib><creatorcontrib>Peng, Fujun</creatorcontrib><creatorcontrib>Cao, Zhengli</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Applied composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianyang</au><au>Chen, Wujun</au><au>Hu, Jianhui</au><au>Zhao, Bing</au><au>Fang, Guangqiang</au><au>Peng, Fujun</au><au>Cao, Zhengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis</atitle><jtitle>Applied composite materials</jtitle><stitle>Appl Compos Mater</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>29</volume><issue>2</issue><spage>473</spage><epage>496</epage><pages>473-496</pages><issn>0929-189X</issn><eissn>1573-4897</eissn><abstract>Temperature is a paramount factor for shape memory polymer composites (SMPCs) to implement their shape recovery functions and present their high specific stiffness when applied in aerospace deployable structures. However, many existing studies focused on the thermo-mechanics and shape memory behaviors of SMPC were established based on uniform temperature distribution. This work explores the specific characteristics of thermal conduction behaviors of single-ply carbon fiber broken twill weave reinforced thermally induced resin-based SMPCs by multi-scale analysis method. The thermal conductivities are measured by the laser flash analysis (LFA) method, and the results are modified by the specific heat testing results from differential scanning calorimeter (DSC). The periodical dividing areas and multi-scale representative volume elements (RVEs) are developed to elaborate the thermal conduction behavior and uneven temperature distribution of 3–1 twill weave reinforced SMPCs. Through the finite element analysis (FEA) and comparisons, the particularity of twill breaking woven materials compared with other woven materials is shown. By comparing the experimental and numerical results of thermal conductivities, the multi-scale models and analysis of thermal conduction behavior are validated to be effective.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10443-021-09977-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-9573-1452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0929-189X
ispartof Applied composite materials, 2022-04, Vol.29 (2), p.473-496
issn 0929-189X
1573-4897
language eng
recordid cdi_proquest_journals_2657510187
source SpringerNature Complete Journals
subjects Behavior
Carbon fiber reinforced plastics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Finite element method
Industrial Chemistry/Chemical Engineering
Materials Science
Mathematical analysis
Multiscale analysis
Polymer matrix composites
Polymer Sciences
Polymers
Resins
Scale models
Shape memory
Stiffness
Temperature distribution
Thermodynamics
title Thermal Conduction Behaviors of Single-ply Broken Twill Weave Reinforced Thermally Induced Resin-based Shape Memory Polymer Composites: Multi-scale Method Analysis and Laser Flash Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conduction%20Behaviors%20of%20Single-ply%20Broken%20Twill%20Weave%20Reinforced%20Thermally%20Induced%20Resin-based%20Shape%20Memory%20Polymer%20Composites:%20Multi-scale%20Method%20Analysis%20and%20Laser%20Flash%20Analysis&rft.jtitle=Applied%20composite%20materials&rft.au=Yang,%20Tianyang&rft.date=2022-04-01&rft.volume=29&rft.issue=2&rft.spage=473&rft.epage=496&rft.pages=473-496&rft.issn=0929-189X&rft.eissn=1573-4897&rft_id=info:doi/10.1007/s10443-021-09977-w&rft_dat=%3Cproquest_cross%3E2657510187%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657510187&rft_id=info:pmid/&rfr_iscdi=true