Random Gap Processes and Asymptotically Complete Sequences

We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-06, Vol.35 (2), p.801-818
Hauptverfasser: Brown, Erin Crossen, Mkrtchyan, Sevak, Pakianathan, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 818
container_issue 2
container_start_page 801
container_title Journal of theoretical probability
container_volume 35
creator Brown, Erin Crossen
Mkrtchyan, Sevak
Pakianathan, Jonathan
description We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically m -complete for every m ≥ 2 , i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of m distinct weights for any fixed m ≥ 2 . Under the weaker assumption of finite 1 2 -moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.
doi_str_mv 10.1007/s10959-021-01091-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2657405968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657405968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZtGkab8uiu8KC4sc5pGkiu7RNTbqH_fdmreDN0wzD874DDyHXCLcIIO4iguSSAkMKaUVanZAZcsGoZDmckhlUsqCyKuCcXMS4AwApAWbk_lX3je-ylR6yl-CNjdHGLN2yRTx0w-jHrdFte8iWvhtaO9rszX7tbZ_AS3LmdBvt1e-ck4_Hh_flmm6eV0_LxYYaJmCkHE1RGaddDaXBElBYzl3DcuawAGtrEI0RDsDU6JCVPEfLpa61qLDMBcvn5GbqHYJPr-Oodn4f-vRSJVoUwGVZJYpNlAk-xmCdGsK20-GgENTRkZocqeRI_ThSx1A-hWKC-08b_qr_SX0DzJposw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657405968</pqid></control><display><type>article</type><title>Random Gap Processes and Asymptotically Complete Sequences</title><source>Springer Nature - Complete Springer Journals</source><creator>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</creator><creatorcontrib>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</creatorcontrib><description>We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically m -complete for every m ≥ 2 , i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of m distinct weights for any fixed m ≥ 2 . Under the weaker assumption of finite 1 2 -moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-021-01091-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Integers ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Random variables ; Statistics</subject><ispartof>Journal of theoretical probability, 2022-06, Vol.35 (2), p.801-818</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</cites><orcidid>0000-0001-7132-465X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-021-01091-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-021-01091-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Brown, Erin Crossen</creatorcontrib><creatorcontrib>Mkrtchyan, Sevak</creatorcontrib><creatorcontrib>Pakianathan, Jonathan</creatorcontrib><title>Random Gap Processes and Asymptotically Complete Sequences</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically m -complete for every m ≥ 2 , i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of m distinct weights for any fixed m ≥ 2 . Under the weaker assumption of finite 1 2 -moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</description><subject>Asymptotic properties</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZtGkab8uiu8KC4sc5pGkiu7RNTbqH_fdmreDN0wzD874DDyHXCLcIIO4iguSSAkMKaUVanZAZcsGoZDmckhlUsqCyKuCcXMS4AwApAWbk_lX3je-ylR6yl-CNjdHGLN2yRTx0w-jHrdFte8iWvhtaO9rszX7tbZ_AS3LmdBvt1e-ck4_Hh_flmm6eV0_LxYYaJmCkHE1RGaddDaXBElBYzl3DcuawAGtrEI0RDsDU6JCVPEfLpa61qLDMBcvn5GbqHYJPr-Oodn4f-vRSJVoUwGVZJYpNlAk-xmCdGsK20-GgENTRkZocqeRI_ThSx1A-hWKC-08b_qr_SX0DzJposw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Brown, Erin Crossen</creator><creator>Mkrtchyan, Sevak</creator><creator>Pakianathan, Jonathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7132-465X</orcidid></search><sort><creationdate>20220601</creationdate><title>Random Gap Processes and Asymptotically Complete Sequences</title><author>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Erin Crossen</creatorcontrib><creatorcontrib>Mkrtchyan, Sevak</creatorcontrib><creatorcontrib>Pakianathan, Jonathan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Erin Crossen</au><au>Mkrtchyan, Sevak</au><au>Pakianathan, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Gap Processes and Asymptotically Complete Sequences</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>801</spage><epage>818</epage><pages>801-818</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically m -complete for every m ≥ 2 , i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of m distinct weights for any fixed m ≥ 2 . Under the weaker assumption of finite 1 2 -moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-021-01091-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7132-465X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2022-06, Vol.35 (2), p.801-818
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2657405968
source Springer Nature - Complete Springer Journals
subjects Asymptotic properties
Integers
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Random variables
Statistics
title Random Gap Processes and Asymptotically Complete Sequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Gap%20Processes%20and%20Asymptotically%20Complete%20Sequences&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Brown,%20Erin%20Crossen&rft.date=2022-06-01&rft.volume=35&rft.issue=2&rft.spage=801&rft.epage=818&rft.pages=801-818&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-021-01091-8&rft_dat=%3Cproquest_cross%3E2657405968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657405968&rft_id=info:pmid/&rfr_iscdi=true