Random Gap Processes and Asymptotically Complete Sequences
We study a process of generating random positive integer weight sequences { W n } where the gaps between the weights { X n = W n - W n - 1 } are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large e...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2022-06, Vol.35 (2), p.801-818 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 818 |
---|---|
container_issue | 2 |
container_start_page | 801 |
container_title | Journal of theoretical probability |
container_volume | 35 |
creator | Brown, Erin Crossen Mkrtchyan, Sevak Pakianathan, Jonathan |
description | We study a process of generating random positive integer weight sequences
{
W
n
}
where the gaps between the weights
{
X
n
=
W
n
-
W
n
-
1
}
are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically
m
-complete for every
m
≥
2
, i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of
m
distinct weights for any fixed
m
≥
2
. Under the weaker assumption of finite
1
2
-moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights. |
doi_str_mv | 10.1007/s10959-021-01091-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2657405968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657405968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZtGkab8uiu8KC4sc5pGkiu7RNTbqH_fdmreDN0wzD874DDyHXCLcIIO4iguSSAkMKaUVanZAZcsGoZDmckhlUsqCyKuCcXMS4AwApAWbk_lX3je-ylR6yl-CNjdHGLN2yRTx0w-jHrdFte8iWvhtaO9rszX7tbZ_AS3LmdBvt1e-ck4_Hh_flmm6eV0_LxYYaJmCkHE1RGaddDaXBElBYzl3DcuawAGtrEI0RDsDU6JCVPEfLpa61qLDMBcvn5GbqHYJPr-Oodn4f-vRSJVoUwGVZJYpNlAk-xmCdGsK20-GgENTRkZocqeRI_ThSx1A-hWKC-08b_qr_SX0DzJposw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657405968</pqid></control><display><type>article</type><title>Random Gap Processes and Asymptotically Complete Sequences</title><source>Springer Nature - Complete Springer Journals</source><creator>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</creator><creatorcontrib>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</creatorcontrib><description>We study a process of generating random positive integer weight sequences
{
W
n
}
where the gaps between the weights
{
X
n
=
W
n
-
W
n
-
1
}
are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically
m
-complete for every
m
≥
2
, i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of
m
distinct weights for any fixed
m
≥
2
. Under the weaker assumption of finite
1
2
-moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-021-01091-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic properties ; Integers ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Random variables ; Statistics</subject><ispartof>Journal of theoretical probability, 2022-06, Vol.35 (2), p.801-818</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</cites><orcidid>0000-0001-7132-465X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-021-01091-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-021-01091-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Brown, Erin Crossen</creatorcontrib><creatorcontrib>Mkrtchyan, Sevak</creatorcontrib><creatorcontrib>Pakianathan, Jonathan</creatorcontrib><title>Random Gap Processes and Asymptotically Complete Sequences</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>We study a process of generating random positive integer weight sequences
{
W
n
}
where the gaps between the weights
{
X
n
=
W
n
-
W
n
-
1
}
are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically
m
-complete for every
m
≥
2
, i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of
m
distinct weights for any fixed
m
≥
2
. Under the weaker assumption of finite
1
2
-moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</description><subject>Asymptotic properties</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random variables</subject><subject>Statistics</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Fz9GZtGkab8uiu8KC4sc5pGkiu7RNTbqH_fdmreDN0wzD874DDyHXCLcIIO4iguSSAkMKaUVanZAZcsGoZDmckhlUsqCyKuCcXMS4AwApAWbk_lX3je-ylR6yl-CNjdHGLN2yRTx0w-jHrdFte8iWvhtaO9rszX7tbZ_AS3LmdBvt1e-ck4_Hh_flmm6eV0_LxYYaJmCkHE1RGaddDaXBElBYzl3DcuawAGtrEI0RDsDU6JCVPEfLpa61qLDMBcvn5GbqHYJPr-Oodn4f-vRSJVoUwGVZJYpNlAk-xmCdGsK20-GgENTRkZocqeRI_ThSx1A-hWKC-08b_qr_SX0DzJposw</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Brown, Erin Crossen</creator><creator>Mkrtchyan, Sevak</creator><creator>Pakianathan, Jonathan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7132-465X</orcidid></search><sort><creationdate>20220601</creationdate><title>Random Gap Processes and Asymptotically Complete Sequences</title><author>Brown, Erin Crossen ; Mkrtchyan, Sevak ; Pakianathan, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-51c48cfafb06c16017e55fd232f140eeb07dc7f00cb1f126531e59aba78163723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random variables</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Erin Crossen</creatorcontrib><creatorcontrib>Mkrtchyan, Sevak</creatorcontrib><creatorcontrib>Pakianathan, Jonathan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Erin Crossen</au><au>Mkrtchyan, Sevak</au><au>Pakianathan, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Gap Processes and Asymptotically Complete Sequences</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>35</volume><issue>2</issue><spage>801</spage><epage>818</epage><pages>801-818</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>We study a process of generating random positive integer weight sequences
{
W
n
}
where the gaps between the weights
{
X
n
=
W
n
-
W
n
-
1
}
are i.i.d. positive integer-valued random variables. The main result of the paper is that if the gap distribution has a moment generating function with large enough radius of convergence, then the weight sequence is almost surely asymptotically
m
-complete for every
m
≥
2
, i.e. every large enough multiple of the greatest common divisor (gcd) of gap values can be written as a sum of
m
distinct weights for any fixed
m
≥
2
. Under the weaker assumption of finite
1
2
-moment for the gap distribution, we also show the simpler result that, almost surely, the resulting weight sequence is asymptotically complete, i.e. all large enough multiples of the gcd of the possible gap values can be written as a sum of distinct weights.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-021-01091-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-7132-465X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-9840 |
ispartof | Journal of theoretical probability, 2022-06, Vol.35 (2), p.801-818 |
issn | 0894-9840 1572-9230 |
language | eng |
recordid | cdi_proquest_journals_2657405968 |
source | Springer Nature - Complete Springer Journals |
subjects | Asymptotic properties Integers Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Random variables Statistics |
title | Random Gap Processes and Asymptotically Complete Sequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A22%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Gap%20Processes%20and%20Asymptotically%20Complete%20Sequences&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Brown,%20Erin%20Crossen&rft.date=2022-06-01&rft.volume=35&rft.issue=2&rft.spage=801&rft.epage=818&rft.pages=801-818&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-021-01091-8&rft_dat=%3Cproquest_cross%3E2657405968%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657405968&rft_id=info:pmid/&rfr_iscdi=true |