Do CMIP models capture long-term observed annual precipitation trends?
This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis emp...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2022-05, Vol.58 (9-10), p.2825-2842 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2842 |
---|---|
container_issue | 9-10 |
container_start_page | 2825 |
container_title | Climate dynamics |
container_volume | 58 |
creator | Vicente-Serrano, S. M. García-Herrera, R. Peña-Angulo, D. Tomas-Burguera, M. Domínguez-Castro, F. Noguera, I. Calvo, N. Murphy, C. Nieto, R. Gimeno, L. Gutierrez, J. M. Azorin-Molina, C. El Kenawy, A. |
description | This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the model’s ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pattern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically significant model-observation differences on trends (1891–2014) are found at the zonal mean scale. The different model groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top models in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the accuracy of precipitation projections. |
doi_str_mv | 10.1007/s00382-021-06034-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2656973539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A702086075</galeid><sourcerecordid>A702086075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f2009767f7e80118535447f249ed34e22a1e4fa1942bab25af998cf0154c799b3</originalsourceid><addsrcrecordid>eNp9kd9rFDEQx4MoeFb_AZ8WBMGHrZNfm82TlKttDyqWqs8htzu5btlL1iQr539v6gr2Xso8BIbPZ4bJl5C3FE4pgPqYAHjLamC0hga4qA_PyIoKXlqtFs_JCjSHWkklX5JXKd0DUNEotiIX56Faf9ncVPvQ45iqzk55jliNwe_qjHFfhW3C-Av7yno_27GaInbDNGSbh-CrHNH36dNr8sLZMeGbf-8J-XHx-fv6qr7-erlZn13XXVmXa8cAtGqUU9gCpa3kUgjlmNDYc4GMWYrCWaoF29otk9Zp3XYOqBSd0nrLT8i7Ze4Uw88ZUzb3YY6-rDSskY1WXHJdqNOF2tkRzeBdyNF2pXrcD13w6IbSP1PAoG1AySJ8OBIKk_GQd3ZOyWy-3R6z7x-xd2jHfJfCOD98RzoG2QJ2MaQU0ZkpDnsbfxsK5iE1s6RmSmrmb2rmUCS-SKnAfofx_4FPWH8AsoaXSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656973539</pqid></control><display><type>article</type><title>Do CMIP models capture long-term observed annual precipitation trends?</title><source>SpringerNature Complete Journals</source><creator>Vicente-Serrano, S. M. ; García-Herrera, R. ; Peña-Angulo, D. ; Tomas-Burguera, M. ; Domínguez-Castro, F. ; Noguera, I. ; Calvo, N. ; Murphy, C. ; Nieto, R. ; Gimeno, L. ; Gutierrez, J. M. ; Azorin-Molina, C. ; El Kenawy, A.</creator><creatorcontrib>Vicente-Serrano, S. M. ; García-Herrera, R. ; Peña-Angulo, D. ; Tomas-Burguera, M. ; Domínguez-Castro, F. ; Noguera, I. ; Calvo, N. ; Murphy, C. ; Nieto, R. ; Gimeno, L. ; Gutierrez, J. M. ; Azorin-Molina, C. ; El Kenawy, A.</creatorcontrib><description>This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the model’s ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pattern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically significant model-observation differences on trends (1891–2014) are found at the zonal mean scale. The different model groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top models in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the accuracy of precipitation projections.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-06034-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annual precipitation ; Climate models ; Climatology ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Interannual variability ; Intercomparison ; Modelling ; Oceanography ; Precipitation ; Precipitation trends ; Precipitation variability ; Statistical analysis ; Stratosphere ; Trends</subject><ispartof>Climate dynamics, 2022-05, Vol.58 (9-10), p.2825-2842</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f2009767f7e80118535447f249ed34e22a1e4fa1942bab25af998cf0154c799b3</citedby><cites>FETCH-LOGICAL-c467t-f2009767f7e80118535447f249ed34e22a1e4fa1942bab25af998cf0154c799b3</cites><orcidid>0000-0003-2892-518X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-06034-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-06034-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vicente-Serrano, S. M.</creatorcontrib><creatorcontrib>García-Herrera, R.</creatorcontrib><creatorcontrib>Peña-Angulo, D.</creatorcontrib><creatorcontrib>Tomas-Burguera, M.</creatorcontrib><creatorcontrib>Domínguez-Castro, F.</creatorcontrib><creatorcontrib>Noguera, I.</creatorcontrib><creatorcontrib>Calvo, N.</creatorcontrib><creatorcontrib>Murphy, C.</creatorcontrib><creatorcontrib>Nieto, R.</creatorcontrib><creatorcontrib>Gimeno, L.</creatorcontrib><creatorcontrib>Gutierrez, J. M.</creatorcontrib><creatorcontrib>Azorin-Molina, C.</creatorcontrib><creatorcontrib>El Kenawy, A.</creatorcontrib><title>Do CMIP models capture long-term observed annual precipitation trends?</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the model’s ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pattern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically significant model-observation differences on trends (1891–2014) are found at the zonal mean scale. The different model groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top models in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the accuracy of precipitation projections.</description><subject>Annual precipitation</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Interannual variability</subject><subject>Intercomparison</subject><subject>Modelling</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation trends</subject><subject>Precipitation variability</subject><subject>Statistical analysis</subject><subject>Stratosphere</subject><subject>Trends</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kd9rFDEQx4MoeFb_AZ8WBMGHrZNfm82TlKttDyqWqs8htzu5btlL1iQr539v6gr2Xso8BIbPZ4bJl5C3FE4pgPqYAHjLamC0hga4qA_PyIoKXlqtFs_JCjSHWkklX5JXKd0DUNEotiIX56Faf9ncVPvQ45iqzk55jliNwe_qjHFfhW3C-Av7yno_27GaInbDNGSbh-CrHNH36dNr8sLZMeGbf-8J-XHx-fv6qr7-erlZn13XXVmXa8cAtGqUU9gCpa3kUgjlmNDYc4GMWYrCWaoF29otk9Zp3XYOqBSd0nrLT8i7Ze4Uw88ZUzb3YY6-rDSskY1WXHJdqNOF2tkRzeBdyNF2pXrcD13w6IbSP1PAoG1AySJ8OBIKk_GQd3ZOyWy-3R6z7x-xd2jHfJfCOD98RzoG2QJ2MaQU0ZkpDnsbfxsK5iE1s6RmSmrmb2rmUCS-SKnAfofx_4FPWH8AsoaXSw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Vicente-Serrano, S. M.</creator><creator>García-Herrera, R.</creator><creator>Peña-Angulo, D.</creator><creator>Tomas-Burguera, M.</creator><creator>Domínguez-Castro, F.</creator><creator>Noguera, I.</creator><creator>Calvo, N.</creator><creator>Murphy, C.</creator><creator>Nieto, R.</creator><creator>Gimeno, L.</creator><creator>Gutierrez, J. M.</creator><creator>Azorin-Molina, C.</creator><creator>El Kenawy, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2892-518X</orcidid></search><sort><creationdate>20220501</creationdate><title>Do CMIP models capture long-term observed annual precipitation trends?</title><author>Vicente-Serrano, S. M. ; García-Herrera, R. ; Peña-Angulo, D. ; Tomas-Burguera, M. ; Domínguez-Castro, F. ; Noguera, I. ; Calvo, N. ; Murphy, C. ; Nieto, R. ; Gimeno, L. ; Gutierrez, J. M. ; Azorin-Molina, C. ; El Kenawy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f2009767f7e80118535447f249ed34e22a1e4fa1942bab25af998cf0154c799b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annual precipitation</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Interannual variability</topic><topic>Intercomparison</topic><topic>Modelling</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation trends</topic><topic>Precipitation variability</topic><topic>Statistical analysis</topic><topic>Stratosphere</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vicente-Serrano, S. M.</creatorcontrib><creatorcontrib>García-Herrera, R.</creatorcontrib><creatorcontrib>Peña-Angulo, D.</creatorcontrib><creatorcontrib>Tomas-Burguera, M.</creatorcontrib><creatorcontrib>Domínguez-Castro, F.</creatorcontrib><creatorcontrib>Noguera, I.</creatorcontrib><creatorcontrib>Calvo, N.</creatorcontrib><creatorcontrib>Murphy, C.</creatorcontrib><creatorcontrib>Nieto, R.</creatorcontrib><creatorcontrib>Gimeno, L.</creatorcontrib><creatorcontrib>Gutierrez, J. M.</creatorcontrib><creatorcontrib>Azorin-Molina, C.</creatorcontrib><creatorcontrib>El Kenawy, A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vicente-Serrano, S. M.</au><au>García-Herrera, R.</au><au>Peña-Angulo, D.</au><au>Tomas-Burguera, M.</au><au>Domínguez-Castro, F.</au><au>Noguera, I.</au><au>Calvo, N.</au><au>Murphy, C.</au><au>Nieto, R.</au><au>Gimeno, L.</au><au>Gutierrez, J. M.</au><au>Azorin-Molina, C.</au><au>El Kenawy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Do CMIP models capture long-term observed annual precipitation trends?</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>58</volume><issue>9-10</issue><spage>2825</spage><epage>2842</epage><pages>2825-2842</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>This study provides a long-term (1891–2014) global assessment of precipitation trends using data from two station-based gridded datasets and climate model outputs evolved through the fifth and sixth phases of the Coupled Model Intercomparison Project (CMIP5 and CMIP6, respectively). Our analysis employs a variety of modeling groups that incorporate low- and high-top level members, with the aim of assessing the possible effects of including a well-resolved stratosphere on the model’s ability to reproduce long-term observed annual precipitation trends. Results demonstrate that only a few regions show statistically significant differences in precipitation trends between observations and models. Nevertheless, this pattern is mostly caused by the strong interannual variability of precipitation in most of the world regions. Thus, statistically significant model-observation differences on trends (1891–2014) are found at the zonal mean scale. The different model groups clearly fail to reproduce the spatial patterns of annual precipitation trends and the regions where stronger increases or decreases are recorded. This study also stresses that there are no significant differences between low- and high-top models in capturing observed precipitation trends, indicating that having a well-resolved stratosphere has a low impact on the accuracy of precipitation projections.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-06034-x</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2892-518X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2022-05, Vol.58 (9-10), p.2825-2842 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2656973539 |
source | SpringerNature Complete Journals |
subjects | Annual precipitation Climate models Climatology Earth and Environmental Science Earth Sciences Geophysics/Geodesy Interannual variability Intercomparison Modelling Oceanography Precipitation Precipitation trends Precipitation variability Statistical analysis Stratosphere Trends |
title | Do CMIP models capture long-term observed annual precipitation trends? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Do%20CMIP%20models%20capture%20long-term%20observed%20annual%20precipitation%20trends?&rft.jtitle=Climate%20dynamics&rft.au=Vicente-Serrano,%20S.%20M.&rft.date=2022-05-01&rft.volume=58&rft.issue=9-10&rft.spage=2825&rft.epage=2842&rft.pages=2825-2842&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-06034-x&rft_dat=%3Cgale_proqu%3EA702086075%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656973539&rft_id=info:pmid/&rft_galeid=A702086075&rfr_iscdi=true |