Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network
AbstractThe prediction of dam settlement data plays an important role in analyzing whether the dam is in a safe operation state. But in the field of surveying engineering, the original data measured by instruments will inevitably have random and unpredictable random errors, and the settlement of dam...
Gespeichert in:
Veröffentlicht in: | Journal of surveying engineering 2022-08, Vol.148 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Journal of surveying engineering |
container_volume | 148 |
creator | Xu, Yaming Pan, Pai Xing, Cheng |
description | AbstractThe prediction of dam settlement data plays an important role in analyzing whether the dam is in a safe operation state. But in the field of surveying engineering, the original data measured by instruments will inevitably have random and unpredictable random errors, and the settlement of dams usually has a strong correlation with environmental parameters. In this study, the influence of random error and environmental parameters on dam settlement prediction is discussed, and a prediction model based on multi-input long short-term memory (LSTM) network and random error extraction is proposed. Through the settlement data of a concrete face rockfill dam, the analysis shows that removing random errors can significantly improve the short-term prediction performance and considering environmental parameters can significantly improve the long-term prediction performance. In addition, through comparison and generalization experiments, this method not only has higher prediction accuracy, but also can be applied to other surveying and mapping engineering fields. |
doi_str_mv | 10.1061/(ASCE)SU.1943-5428.0000400 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656786236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656786236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-69e115acbb340d1a7cf26770216b299c30ac7a1bedef41106699177be0c256483</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwDxZc4JBix47dcCslQKUWEGnF0XIcR0ppktZ2BPw9jlLgxF52NZrZ1T4AzjEaYcTw9eUknSZX6WqEY0qCiIbjEfJFEToAg1_tEAwQJySIaUSOwYm1a4Qw5QgPwNudrGCqndvoStcOvhidl8qVTQ1vpdU59MOrrPOmgokxjYHJpzOyN3gZLtqNK4NZvW0dnKfLBXzS7qMx76fgqJAbq8_2fQhW98ly-hjMnx9m08k8kCHjLmCxxjiSKssIRTmWXBVe5yjELAvjWBEkFZc407kuKPYvszjGnGcaqTBidEyG4KLfuzXNrtXWiXXTmtqfFCGLGB-zkDDvuuldyjTWGl2IrSkrab4ERqIDKUQHUqQr0UETHTSxB-nDrA9Lq_Tf-p_k_8FvXpR2TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656786236</pqid></control><display><type>article</type><title>Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Xu, Yaming ; Pan, Pai ; Xing, Cheng</creator><creatorcontrib>Xu, Yaming ; Pan, Pai ; Xing, Cheng</creatorcontrib><description>AbstractThe prediction of dam settlement data plays an important role in analyzing whether the dam is in a safe operation state. But in the field of surveying engineering, the original data measured by instruments will inevitably have random and unpredictable random errors, and the settlement of dams usually has a strong correlation with environmental parameters. In this study, the influence of random error and environmental parameters on dam settlement prediction is discussed, and a prediction model based on multi-input long short-term memory (LSTM) network and random error extraction is proposed. Through the settlement data of a concrete face rockfill dam, the analysis shows that removing random errors can significantly improve the short-term prediction performance and considering environmental parameters can significantly improve the long-term prediction performance. In addition, through comparison and generalization experiments, this method not only has higher prediction accuracy, but also can be applied to other surveying and mapping engineering fields.</description><identifier>ISSN: 0733-9453</identifier><identifier>EISSN: 1943-5428</identifier><identifier>DOI: 10.1061/(ASCE)SU.1943-5428.0000400</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Concrete dams ; Error analysis ; Parameters ; Performance prediction ; Prediction models ; Random errors ; Rockfill dams ; Settlement analysis ; Surveying ; Technical Papers</subject><ispartof>Journal of surveying engineering, 2022-08, Vol.148 (3)</ispartof><rights>2022 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a267t-69e115acbb340d1a7cf26770216b299c30ac7a1bedef41106699177be0c256483</citedby><cites>FETCH-LOGICAL-a267t-69e115acbb340d1a7cf26770216b299c30ac7a1bedef41106699177be0c256483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)SU.1943-5428.0000400$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)SU.1943-5428.0000400$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Xu, Yaming</creatorcontrib><creatorcontrib>Pan, Pai</creatorcontrib><creatorcontrib>Xing, Cheng</creatorcontrib><title>Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network</title><title>Journal of surveying engineering</title><description>AbstractThe prediction of dam settlement data plays an important role in analyzing whether the dam is in a safe operation state. But in the field of surveying engineering, the original data measured by instruments will inevitably have random and unpredictable random errors, and the settlement of dams usually has a strong correlation with environmental parameters. In this study, the influence of random error and environmental parameters on dam settlement prediction is discussed, and a prediction model based on multi-input long short-term memory (LSTM) network and random error extraction is proposed. Through the settlement data of a concrete face rockfill dam, the analysis shows that removing random errors can significantly improve the short-term prediction performance and considering environmental parameters can significantly improve the long-term prediction performance. In addition, through comparison and generalization experiments, this method not only has higher prediction accuracy, but also can be applied to other surveying and mapping engineering fields.</description><subject>Concrete dams</subject><subject>Error analysis</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>Random errors</subject><subject>Rockfill dams</subject><subject>Settlement analysis</subject><subject>Surveying</subject><subject>Technical Papers</subject><issn>0733-9453</issn><issn>1943-5428</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqXwDxZc4JBix47dcCslQKUWEGnF0XIcR0ppktZ2BPw9jlLgxF52NZrZ1T4AzjEaYcTw9eUknSZX6WqEY0qCiIbjEfJFEToAg1_tEAwQJySIaUSOwYm1a4Qw5QgPwNudrGCqndvoStcOvhidl8qVTQ1vpdU59MOrrPOmgokxjYHJpzOyN3gZLtqNK4NZvW0dnKfLBXzS7qMx76fgqJAbq8_2fQhW98ly-hjMnx9m08k8kCHjLmCxxjiSKssIRTmWXBVe5yjELAvjWBEkFZc407kuKPYvszjGnGcaqTBidEyG4KLfuzXNrtXWiXXTmtqfFCGLGB-zkDDvuuldyjTWGl2IrSkrab4ERqIDKUQHUqQr0UETHTSxB-nDrA9Lq_Tf-p_k_8FvXpR2TQ</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Xu, Yaming</creator><creator>Pan, Pai</creator><creator>Xing, Cheng</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20220801</creationdate><title>Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network</title><author>Xu, Yaming ; Pan, Pai ; Xing, Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-69e115acbb340d1a7cf26770216b299c30ac7a1bedef41106699177be0c256483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Concrete dams</topic><topic>Error analysis</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>Random errors</topic><topic>Rockfill dams</topic><topic>Settlement analysis</topic><topic>Surveying</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yaming</creatorcontrib><creatorcontrib>Pan, Pai</creatorcontrib><creatorcontrib>Xing, Cheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of surveying engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yaming</au><au>Pan, Pai</au><au>Xing, Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network</atitle><jtitle>Journal of surveying engineering</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>148</volume><issue>3</issue><issn>0733-9453</issn><eissn>1943-5428</eissn><abstract>AbstractThe prediction of dam settlement data plays an important role in analyzing whether the dam is in a safe operation state. But in the field of surveying engineering, the original data measured by instruments will inevitably have random and unpredictable random errors, and the settlement of dams usually has a strong correlation with environmental parameters. In this study, the influence of random error and environmental parameters on dam settlement prediction is discussed, and a prediction model based on multi-input long short-term memory (LSTM) network and random error extraction is proposed. Through the settlement data of a concrete face rockfill dam, the analysis shows that removing random errors can significantly improve the short-term prediction performance and considering environmental parameters can significantly improve the long-term prediction performance. In addition, through comparison and generalization experiments, this method not only has higher prediction accuracy, but also can be applied to other surveying and mapping engineering fields.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)SU.1943-5428.0000400</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9453 |
ispartof | Journal of surveying engineering, 2022-08, Vol.148 (3) |
issn | 0733-9453 1943-5428 |
language | eng |
recordid | cdi_proquest_journals_2656786236 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Concrete dams Error analysis Parameters Performance prediction Prediction models Random errors Rockfill dams Settlement analysis Surveying Technical Papers |
title | Dam Settlement Prediction Based on Random Error Extraction and Multi-Input LSTM Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dam%20Settlement%20Prediction%20Based%20on%20Random%20Error%20Extraction%20and%20Multi-Input%20LSTM%20Network&rft.jtitle=Journal%20of%20surveying%20engineering&rft.au=Xu,%20Yaming&rft.date=2022-08-01&rft.volume=148&rft.issue=3&rft.issn=0733-9453&rft.eissn=1943-5428&rft_id=info:doi/10.1061/(ASCE)SU.1943-5428.0000400&rft_dat=%3Cproquest_cross%3E2656786236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656786236&rft_id=info:pmid/&rfr_iscdi=true |