Segmentation using Codebook Index Statistics for Vector Quantized Images

In this paper, the segmentation using codebook index statistics (SUCIS) method is proposed for vector-quantized images. Three different codebooks are constructed according to the statistical characteristics (mean, variance, and gradient) of the codewords. Then they are employed to generate three dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2016-01, Vol.7 (12)
Hauptverfasser: T., Hsuan, Su, Jian-Tein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title International journal of advanced computer science & applications
container_volume 7
creator T., Hsuan
Su, Jian-Tein
description In this paper, the segmentation using codebook index statistics (SUCIS) method is proposed for vector-quantized images. Three different codebooks are constructed according to the statistical characteristics (mean, variance, and gradient) of the codewords. Then they are employed to generate three different index images, which can be used to analyze the image contents including the homogeneous, edge, and texture blocks. An adaptive thresholding method is proposed to assign all image blocks in the compressed image to several disjoint regions with different characteristics. In order to make the segmentation result more accurate, two post-processing methods: the region merging and boundary smoothing schemes, are proposed. Finally, the pixel-wise segmentation result can be obtained by partitioning the image blocks at the single-pixel level. Experimental results demonstrate the effectiveness of the proposed SUCIS method on image segmentation, especially for the applications on object extraction.
doi_str_mv 10.14569/IJACSA.2016.071208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656501041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656501041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c157t-7459d447aada581dc2c16cfcf24f3754dce016125fc53a3824e6a0ead7a92ff73</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWGp_gZuA66l5Z2ZZBrUjBZGquAsxjzLVTmqSAe2vd9rxbs6FeziH-wFwjdEcMy6q2-ZxUa8Xc4KwmCOJCSrPwIRgLgrOJTo_7WWBkXy_BLOUtmgYWhFR0glYrt1m57qscxs62Ke228A6WPcRwidsOut-4Pp4TLk1CfoQ4ZszeZDnXne5PTgLm53euHQFLrz-Sm72r1Pwen_3Ui-L1dNDUy9WhcFc5kIyXlnGpNZW8xJbQwwWxhtPmKeSM2vc8AYm3BtONS0Jc0Ijp63UFfFe0im4GXP3MXz3LmW1DX3shkpFBBccYcTw4KKjy8SQUnRe7WO70_FXYaRO1NRITR2pqZEa_QOKi2Aq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656501041</pqid></control><display><type>article</type><title>Segmentation using Codebook Index Statistics for Vector Quantized Images</title><source>Elektronische Zeitschriftenbibliothek</source><creator>T., Hsuan ; Su, Jian-Tein</creator><creatorcontrib>T., Hsuan ; Su, Jian-Tein</creatorcontrib><description>In this paper, the segmentation using codebook index statistics (SUCIS) method is proposed for vector-quantized images. Three different codebooks are constructed according to the statistical characteristics (mean, variance, and gradient) of the codewords. Then they are employed to generate three different index images, which can be used to analyze the image contents including the homogeneous, edge, and texture blocks. An adaptive thresholding method is proposed to assign all image blocks in the compressed image to several disjoint regions with different characteristics. In order to make the segmentation result more accurate, two post-processing methods: the region merging and boundary smoothing schemes, are proposed. Finally, the pixel-wise segmentation result can be obtained by partitioning the image blocks at the single-pixel level. Experimental results demonstrate the effectiveness of the proposed SUCIS method on image segmentation, especially for the applications on object extraction.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2016.071208</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Image segmentation ; Pixels</subject><ispartof>International journal of advanced computer science &amp; applications, 2016-01, Vol.7 (12)</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>T., Hsuan</creatorcontrib><creatorcontrib>Su, Jian-Tein</creatorcontrib><title>Segmentation using Codebook Index Statistics for Vector Quantized Images</title><title>International journal of advanced computer science &amp; applications</title><description>In this paper, the segmentation using codebook index statistics (SUCIS) method is proposed for vector-quantized images. Three different codebooks are constructed according to the statistical characteristics (mean, variance, and gradient) of the codewords. Then they are employed to generate three different index images, which can be used to analyze the image contents including the homogeneous, edge, and texture blocks. An adaptive thresholding method is proposed to assign all image blocks in the compressed image to several disjoint regions with different characteristics. In order to make the segmentation result more accurate, two post-processing methods: the region merging and boundary smoothing schemes, are proposed. Finally, the pixel-wise segmentation result can be obtained by partitioning the image blocks at the single-pixel level. Experimental results demonstrate the effectiveness of the proposed SUCIS method on image segmentation, especially for the applications on object extraction.</description><subject>Image segmentation</subject><subject>Pixels</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLAzEUhYMoWGp_gZuA66l5Z2ZZBrUjBZGquAsxjzLVTmqSAe2vd9rxbs6FeziH-wFwjdEcMy6q2-ZxUa8Xc4KwmCOJCSrPwIRgLgrOJTo_7WWBkXy_BLOUtmgYWhFR0glYrt1m57qscxs62Ke228A6WPcRwidsOut-4Pp4TLk1CfoQ4ZszeZDnXne5PTgLm53euHQFLrz-Sm72r1Pwen_3Ui-L1dNDUy9WhcFc5kIyXlnGpNZW8xJbQwwWxhtPmKeSM2vc8AYm3BtONS0Jc0Ijp63UFfFe0im4GXP3MXz3LmW1DX3shkpFBBccYcTw4KKjy8SQUnRe7WO70_FXYaRO1NRITR2pqZEa_QOKi2Aq</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>T., Hsuan</creator><creator>Su, Jian-Tein</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Segmentation using Codebook Index Statistics for Vector Quantized Images</title><author>T., Hsuan ; Su, Jian-Tein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c157t-7459d447aada581dc2c16cfcf24f3754dce016125fc53a3824e6a0ead7a92ff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Image segmentation</topic><topic>Pixels</topic><toplevel>online_resources</toplevel><creatorcontrib>T., Hsuan</creatorcontrib><creatorcontrib>Su, Jian-Tein</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>T., Hsuan</au><au>Su, Jian-Tein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation using Codebook Index Statistics for Vector Quantized Images</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>7</volume><issue>12</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>In this paper, the segmentation using codebook index statistics (SUCIS) method is proposed for vector-quantized images. Three different codebooks are constructed according to the statistical characteristics (mean, variance, and gradient) of the codewords. Then they are employed to generate three different index images, which can be used to analyze the image contents including the homogeneous, edge, and texture blocks. An adaptive thresholding method is proposed to assign all image blocks in the compressed image to several disjoint regions with different characteristics. In order to make the segmentation result more accurate, two post-processing methods: the region merging and boundary smoothing schemes, are proposed. Finally, the pixel-wise segmentation result can be obtained by partitioning the image blocks at the single-pixel level. Experimental results demonstrate the effectiveness of the proposed SUCIS method on image segmentation, especially for the applications on object extraction.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2016.071208</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2016-01, Vol.7 (12)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2656501041
source Elektronische Zeitschriftenbibliothek
subjects Image segmentation
Pixels
title Segmentation using Codebook Index Statistics for Vector Quantized Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20using%20Codebook%20Index%20Statistics%20for%20Vector%20Quantized%20Images&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=T.,%20Hsuan&rft.date=2016-01-01&rft.volume=7&rft.issue=12&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2016.071208&rft_dat=%3Cproquest_cross%3E2656501041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656501041&rft_id=info:pmid/&rfr_iscdi=true