A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions
Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorica...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2016-01, Vol.7 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 7 |
creator | Sharma, Abha S., R. |
description | Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure. |
doi_str_mv | 10.14569/IJACSA.2016.070256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656496101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656496101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-e98edf2be1f9aab7d883c03b167644bb9b7cff7fc2ab9c5b5ec563544c58e4a33</originalsourceid><addsrcrecordid>eNo1UctOwzAQjBBIVKVfwMUS5xQ_Yic5hlBKUaUeCohbZDt2SZXGwXYk-kN8J04LK612tTszq9VE0S2Cc5RQlt-vXopyW8wxRGwOU4gpu4gmGFEWU5rCy1OfxQimH9fRzLk9DEFyzDIyiX4K8M5twzsPjAZL1SnfSFC0O2Mb_3kAD9ypGpTcq3EieQseueegbAfnlW26HdDGgtIcei79_9gB3tUhweK7D6CD6nwgbv1QH4HpwNYchQrbk9JIX5tReOQsWyNCu-l9cxgpph18Yzp3E11p3jo1-6vT6O1p8Vo-x-vNclUW61hiiH2s8kzVGguFdM65SOssIxISgVjKkkSIXKRS61RLzEUuqaBKUkZokkiaqYQTMo3uzrq9NV-Dcr7am8F24WSFGWVJzhBEAUXOKGmNc1bpqg9fcnusEKxOnlRnT6rRk-rsCfkFMoiCKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656496101</pqid></control><display><type>article</type><title>A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sharma, Abha ; S., R.</creator><creatorcontrib>Sharma, Abha ; S., R.</creatorcontrib><description>Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2016.070256</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Clustering ; Genetic algorithms ; Statistical analysis</subject><ispartof>International journal of advanced computer science & applications, 2016-01, Vol.7 (2)</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Sharma, Abha</creatorcontrib><creatorcontrib>S., R.</creatorcontrib><title>A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions</title><title>International journal of advanced computer science & applications</title><description>Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure.</description><subject>Clustering</subject><subject>Genetic algorithms</subject><subject>Statistical analysis</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1UctOwzAQjBBIVKVfwMUS5xQ_Yic5hlBKUaUeCohbZDt2SZXGwXYk-kN8J04LK612tTszq9VE0S2Cc5RQlt-vXopyW8wxRGwOU4gpu4gmGFEWU5rCy1OfxQimH9fRzLk9DEFyzDIyiX4K8M5twzsPjAZL1SnfSFC0O2Mb_3kAD9ypGpTcq3EieQseueegbAfnlW26HdDGgtIcei79_9gB3tUhweK7D6CD6nwgbv1QH4HpwNYchQrbk9JIX5tReOQsWyNCu-l9cxgpph18Yzp3E11p3jo1-6vT6O1p8Vo-x-vNclUW61hiiH2s8kzVGguFdM65SOssIxISgVjKkkSIXKRS61RLzEUuqaBKUkZokkiaqYQTMo3uzrq9NV-Dcr7am8F24WSFGWVJzhBEAUXOKGmNc1bpqg9fcnusEKxOnlRnT6rRk-rsCfkFMoiCKg</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Sharma, Abha</creator><creator>S., R.</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions</title><author>Sharma, Abha ; S., R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-e98edf2be1f9aab7d883c03b167644bb9b7cff7fc2ab9c5b5ec563544c58e4a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Clustering</topic><topic>Genetic algorithms</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Abha</creatorcontrib><creatorcontrib>S., R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Abha</au><au>S., R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>7</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Almost all partitioning clustering algorithms getting stuck to the local optimal solutions. Using Genetic algorithms (GA) the results can be find globally optimal. This piece of work offers and investigates a new variant of the Genetic algorithm (GA) based k-Modes clustering algorithm for categorical data. A statistical analysis have been done on the popular categorical dataset which shows the user specified cluster centres stuck at local optimal solution in K-modes algorithm even in all the higher iterations and the proposed algorithm overcome this problem of local optima. To the best of our knowledge, such comparison has been reported here for the first time for the case of categorical data. The obtained results, shows that the proposed algorithm is better over the conventional k-Modes algorithm in terms of optimal solutions and within cluster variation measure.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2016.070256</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2016-01, Vol.7 (2) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2656496101 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Clustering Genetic algorithms Statistical analysis |
title | A Variant of Genetic Algorithm Based Categorical Data Clustering for Compact Clusters and an Experimental Study on Soybean Data for Local and Global Optimal Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variant%20of%20Genetic%20Algorithm%20Based%20Categorical%20Data%20Clustering%20for%20Compact%20Clusters%20and%20an%20Experimental%20Study%20on%20Soybean%20Data%20for%20Local%20and%20Global%20Optimal%20Solutions&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Sharma,%20Abha&rft.date=2016-01-01&rft.volume=7&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2016.070256&rft_dat=%3Cproquest_cross%3E2656496101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656496101&rft_id=info:pmid/&rfr_iscdi=true |