A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot

Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. In this paper, a variational mode decomposition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 2022-06, Vol.33 (5), p.1483-1502
Hauptverfasser: Wang, Yu, Zhang, Mingkai, Tang, Xiaowei, Peng, Fangyu, Yan, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1502
container_issue 5
container_start_page 1483
container_title Journal of intelligent manufacturing
container_volume 33
creator Wang, Yu
Zhang, Mingkai
Tang, Xiaowei
Peng, Fangyu
Yan, Rong
description Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. In this paper, a variational mode decomposition-support vector machine (VMD-SVM) model based on information entropy (IE) is built to detect chatter in robotic milling. Significantly, the vibration signals are classified into four states for the first time: stable, transition, regular chatter, and irregular chatter. To improve the accuracy of the identification model based on VMD-SVM, a novel hyper-parameter optimization strategy—the kMap method—is proposed in this paper for optimizing three-dimensional hyper-parameters in the VMD-SVM model. The hyper-parameters of VMD-SVM are jointly optimized by the kMap method, with constant step sizes. As an improved grid search (GS), kMap reduces the operation time to the same order of magnitude as the heuristic algorithm (HA) [comprising particle swarm optimization (PSO) and genetic algorithm (GA)]. The VMD-SVM model with the hyper-parameters optimized by kMap exhibits higher accuracy and better stability than the hyper-parameters optimized by PSO and GA. The results of the validation experiments show that the kMap-optimized identification model is effective in industrial robotic milling.
doi_str_mv 10.1007/s10845-021-01736-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656447988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656447988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c76af99019d10826e5e4c27e004641039c06214f79f240966ad206890e5333df3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuun4nHqjylVgzQrlZInNYliYPtCsGvJxAkNqa7fOecqw-hcwqXFCC7ihRyIQkwSoBmXBF9gCZUZozkVMhDNAEtFZGSymN0EuMOAHSu6AStZvh1WfTY98m17tNWeL28Jk_rJW59ZRtc-4Bb1zSu2-ByW6RkA65ssmVyvsPvLm1x0WHXVfuYgisaHPyLT6foqC6aaM9-7xStbm-e5_dk8Xj3MJ8tSMmpTqTMVFFrDVRXw_9MWWlFyTILIJSgwHUJilFRZ7pmArRSRcVA5Rqs5JxXNZ-ii7G3D_5tb2MyO78P3TBpmJJKiEzn-UCxkSqDjzHY2vTBtUX4MBTMtz4z6jODPvOjz-ghxMdQHOBuY8Nf9T-pL7ihcKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656447988</pqid></control><display><type>article</type><title>A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Yu ; Zhang, Mingkai ; Tang, Xiaowei ; Peng, Fangyu ; Yan, Rong</creator><creatorcontrib>Wang, Yu ; Zhang, Mingkai ; Tang, Xiaowei ; Peng, Fangyu ; Yan, Rong</creatorcontrib><description>Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. In this paper, a variational mode decomposition-support vector machine (VMD-SVM) model based on information entropy (IE) is built to detect chatter in robotic milling. Significantly, the vibration signals are classified into four states for the first time: stable, transition, regular chatter, and irregular chatter. To improve the accuracy of the identification model based on VMD-SVM, a novel hyper-parameter optimization strategy—the kMap method—is proposed in this paper for optimizing three-dimensional hyper-parameters in the VMD-SVM model. The hyper-parameters of VMD-SVM are jointly optimized by the kMap method, with constant step sizes. As an improved grid search (GS), kMap reduces the operation time to the same order of magnitude as the heuristic algorithm (HA) [comprising particle swarm optimization (PSO) and genetic algorithm (GA)]. The VMD-SVM model with the hyper-parameters optimized by kMap exhibits higher accuracy and better stability than the hyper-parameters optimized by PSO and GA. The results of the validation experiments show that the kMap-optimized identification model is effective in industrial robotic milling.</description><identifier>ISSN: 0956-5515</identifier><identifier>EISSN: 1572-8145</identifier><identifier>DOI: 10.1007/s10845-021-01736-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced manufacturing technologies ; Algorithms ; Business and Management ; Chatter ; Control ; Entropy (Information theory) ; Genetic algorithms ; Heuristic methods ; Industrial robots ; Machines ; Manufacturing ; Mathematical models ; Mechatronics ; Milling (machining) ; Parameter identification ; Particle swarm optimization ; Processes ; Production ; Robotics ; Signal classification ; Support vector machines ; Vibration</subject><ispartof>Journal of intelligent manufacturing, 2022-06, Vol.33 (5), p.1483-1502</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c76af99019d10826e5e4c27e004641039c06214f79f240966ad206890e5333df3</citedby><cites>FETCH-LOGICAL-c319t-c76af99019d10826e5e4c27e004641039c06214f79f240966ad206890e5333df3</cites><orcidid>0000-0002-6778-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10845-021-01736-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10845-021-01736-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Mingkai</creatorcontrib><creatorcontrib>Tang, Xiaowei</creatorcontrib><creatorcontrib>Peng, Fangyu</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><title>A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot</title><title>Journal of intelligent manufacturing</title><addtitle>J Intell Manuf</addtitle><description>Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. In this paper, a variational mode decomposition-support vector machine (VMD-SVM) model based on information entropy (IE) is built to detect chatter in robotic milling. Significantly, the vibration signals are classified into four states for the first time: stable, transition, regular chatter, and irregular chatter. To improve the accuracy of the identification model based on VMD-SVM, a novel hyper-parameter optimization strategy—the kMap method—is proposed in this paper for optimizing three-dimensional hyper-parameters in the VMD-SVM model. The hyper-parameters of VMD-SVM are jointly optimized by the kMap method, with constant step sizes. As an improved grid search (GS), kMap reduces the operation time to the same order of magnitude as the heuristic algorithm (HA) [comprising particle swarm optimization (PSO) and genetic algorithm (GA)]. The VMD-SVM model with the hyper-parameters optimized by kMap exhibits higher accuracy and better stability than the hyper-parameters optimized by PSO and GA. The results of the validation experiments show that the kMap-optimized identification model is effective in industrial robotic milling.</description><subject>Advanced manufacturing technologies</subject><subject>Algorithms</subject><subject>Business and Management</subject><subject>Chatter</subject><subject>Control</subject><subject>Entropy (Information theory)</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Industrial robots</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Mechatronics</subject><subject>Milling (machining)</subject><subject>Parameter identification</subject><subject>Particle swarm optimization</subject><subject>Processes</subject><subject>Production</subject><subject>Robotics</subject><subject>Signal classification</subject><subject>Support vector machines</subject><subject>Vibration</subject><issn>0956-5515</issn><issn>1572-8145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EEqXwB5gsMRuun4nHqjylVgzQrlZInNYliYPtCsGvJxAkNqa7fOecqw-hcwqXFCC7ihRyIQkwSoBmXBF9gCZUZozkVMhDNAEtFZGSymN0EuMOAHSu6AStZvh1WfTY98m17tNWeL28Jk_rJW59ZRtc-4Bb1zSu2-ByW6RkA65ssmVyvsPvLm1x0WHXVfuYgisaHPyLT6foqC6aaM9-7xStbm-e5_dk8Xj3MJ8tSMmpTqTMVFFrDVRXw_9MWWlFyTILIJSgwHUJilFRZ7pmArRSRcVA5Rqs5JxXNZ-ii7G3D_5tb2MyO78P3TBpmJJKiEzn-UCxkSqDjzHY2vTBtUX4MBTMtz4z6jODPvOjz-ghxMdQHOBuY8Nf9T-pL7ihcKE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Wang, Yu</creator><creator>Zhang, Mingkai</creator><creator>Tang, Xiaowei</creator><creator>Peng, Fangyu</creator><creator>Yan, Rong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6778-8360</orcidid></search><sort><creationdate>20220601</creationdate><title>A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot</title><author>Wang, Yu ; Zhang, Mingkai ; Tang, Xiaowei ; Peng, Fangyu ; Yan, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c76af99019d10826e5e4c27e004641039c06214f79f240966ad206890e5333df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced manufacturing technologies</topic><topic>Algorithms</topic><topic>Business and Management</topic><topic>Chatter</topic><topic>Control</topic><topic>Entropy (Information theory)</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Industrial robots</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Mechatronics</topic><topic>Milling (machining)</topic><topic>Parameter identification</topic><topic>Particle swarm optimization</topic><topic>Processes</topic><topic>Production</topic><topic>Robotics</topic><topic>Signal classification</topic><topic>Support vector machines</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhang, Mingkai</creatorcontrib><creatorcontrib>Tang, Xiaowei</creatorcontrib><creatorcontrib>Peng, Fangyu</creatorcontrib><creatorcontrib>Yan, Rong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zhang, Mingkai</au><au>Tang, Xiaowei</au><au>Peng, Fangyu</au><au>Yan, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot</atitle><jtitle>Journal of intelligent manufacturing</jtitle><stitle>J Intell Manuf</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>33</volume><issue>5</issue><spage>1483</spage><epage>1502</epage><pages>1483-1502</pages><issn>0956-5515</issn><eissn>1572-8145</eissn><abstract>Industrial robots play an important role in the milling of large complex parts. However, the robot is less rigid and prone to vibration-related problems; chatter, which affects machining quality and efficiency, is more complex and difficult to monitor. In this paper, a variational mode decomposition-support vector machine (VMD-SVM) model based on information entropy (IE) is built to detect chatter in robotic milling. Significantly, the vibration signals are classified into four states for the first time: stable, transition, regular chatter, and irregular chatter. To improve the accuracy of the identification model based on VMD-SVM, a novel hyper-parameter optimization strategy—the kMap method—is proposed in this paper for optimizing three-dimensional hyper-parameters in the VMD-SVM model. The hyper-parameters of VMD-SVM are jointly optimized by the kMap method, with constant step sizes. As an improved grid search (GS), kMap reduces the operation time to the same order of magnitude as the heuristic algorithm (HA) [comprising particle swarm optimization (PSO) and genetic algorithm (GA)]. The VMD-SVM model with the hyper-parameters optimized by kMap exhibits higher accuracy and better stability than the hyper-parameters optimized by PSO and GA. The results of the validation experiments show that the kMap-optimized identification model is effective in industrial robotic milling.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10845-021-01736-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6778-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5515
ispartof Journal of intelligent manufacturing, 2022-06, Vol.33 (5), p.1483-1502
issn 0956-5515
1572-8145
language eng
recordid cdi_proquest_journals_2656447988
source Springer Nature - Complete Springer Journals
subjects Advanced manufacturing technologies
Algorithms
Business and Management
Chatter
Control
Entropy (Information theory)
Genetic algorithms
Heuristic methods
Industrial robots
Machines
Manufacturing
Mathematical models
Mechatronics
Milling (machining)
Parameter identification
Particle swarm optimization
Processes
Production
Robotics
Signal classification
Support vector machines
Vibration
title A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kMap%20optimized%20VMD-SVM%20model%20for%20milling%20chatter%20detection%20with%20an%20industrial%20robot&rft.jtitle=Journal%20of%20intelligent%20manufacturing&rft.au=Wang,%20Yu&rft.date=2022-06-01&rft.volume=33&rft.issue=5&rft.spage=1483&rft.epage=1502&rft.pages=1483-1502&rft.issn=0956-5515&rft.eissn=1572-8145&rft_id=info:doi/10.1007/s10845-021-01736-9&rft_dat=%3Cproquest_cross%3E2656447988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656447988&rft_id=info:pmid/&rfr_iscdi=true