Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT
Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often constructed as a wearing course for permeable pavements and on impervious pavements to reduce aquaplaning and noise. The pore structure of PA...
Gespeichert in:
Veröffentlicht in: | Water resources management 2022-04, Vol.36 (6), p.1879-1895 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1895 |
---|---|
container_issue | 6 |
container_start_page | 1879 |
container_title | Water resources management |
container_volume | 36 |
creator | Marchioni, Mariana Fedele, Roberto Raimondi, Anita Sansalone, John Becciu, Gianfranco |
description | Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often constructed as a wearing course for permeable pavements and on impervious pavements to reduce aquaplaning and noise. The pore structure of PA functions as a filter promoting particulate matter (PM) separation. The infiltrating flow characteristics are predominately dependent on pore diameter and pore interconnectivity. X-Ray microTomography (XRT) has successfully estimated these parameters that are otherwise difficult to obtain through conventional gravimetric methods. Pore structure parameters allow modeling of hydraulic conductivity (k) and filtration mechanisms; required to examine the material behavior for infiltration and PM separation. In this study, pore structure parameters were determined through XTR for three PA mixture designs. Additionally, the Kozeny-Kovàv model was implemented to estimate k. PM separation was evaluated using a pore-to-PM diameter categorical model. This filtration mechanism model was validated with data from a rainfall simulator. The filtration model provided a good correlation between measured and modeled data. The identification of filtration mechanisms and k facilitate the design and evaluation of permeable pavement systems as a best management practice (BMP) for runoff volume and peak flow as well as PM and PM-partitioned chemical separation. |
doi_str_mv | 10.1007/s11269-022-03113-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656444680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656444680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-18527f5037e3f6d8c991faa22d36820771d25865b12c450780fa25cc9abc4dc13</originalsourceid><addsrcrecordid>eNp9kE9LwzAYh4MoOKdfwFPAc_TN__Y4hjph4nATvYUsTV1H184kFfbtrVbw5um9PM_vhQehSwrXFEDfREqZygkwRoBTyok4QiMqNSdUSThGI8gZEKEFPUVnMW4Bei2HEVoufNh5u649nsT9xtYJzw5FsF1dOTxtm6Jzqfqs0gHbpsALG1Llutomjx9tSj7gpd_bYFPVNvi1Shv89rw6RyelraO_-L1j9HJ3u5rOyPzp_mE6mRPHFU-EZpLpUgLXnpeqyFye09JaxgquMgZa04LJTMk1ZU5I0BmUlknncrt2onCUj9HVsLsP7UfnYzLbtgtN_9IwJZUQQmXQU2ygXGhjDL40-1DtbDgYCuY7nhnimT6e-YlnRC_xQYo93Lz78Df9j_UF6ThxIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656444680</pqid></control><display><type>article</type><title>Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT</title><source>SpringerLink (Online service)</source><creator>Marchioni, Mariana ; Fedele, Roberto ; Raimondi, Anita ; Sansalone, John ; Becciu, Gianfranco</creator><creatorcontrib>Marchioni, Mariana ; Fedele, Roberto ; Raimondi, Anita ; Sansalone, John ; Becciu, Gianfranco</creatorcontrib><description>Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often constructed as a wearing course for permeable pavements and on impervious pavements to reduce aquaplaning and noise. The pore structure of PA functions as a filter promoting particulate matter (PM) separation. The infiltrating flow characteristics are predominately dependent on pore diameter and pore interconnectivity. X-Ray microTomography (XRT) has successfully estimated these parameters that are otherwise difficult to obtain through conventional gravimetric methods. Pore structure parameters allow modeling of hydraulic conductivity (k) and filtration mechanisms; required to examine the material behavior for infiltration and PM separation. In this study, pore structure parameters were determined through XTR for three PA mixture designs. Additionally, the Kozeny-Kovàv model was implemented to estimate k. PM separation was evaluated using a pore-to-PM diameter categorical model. This filtration mechanism model was validated with data from a rainfall simulator. The filtration model provided a good correlation between measured and modeled data. The identification of filtration mechanisms and k facilitate the design and evaluation of permeable pavement systems as a best management practice (BMP) for runoff volume and peak flow as well as PM and PM-partitioned chemical separation.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-022-03113-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asphalt ; Atmospheric Sciences ; Best management practices ; Chemical separation ; Civil Engineering ; Composite materials ; Design ; Diameters ; Earth and Environmental Science ; Earth Sciences ; Environment ; Evaluation ; Filtration ; Flow characteristics ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulic conductivity ; Hydrogeology ; Hydrology/Water Resources ; Infiltration ; Mathematical models ; Noise reduction ; Parameters ; Particulate emissions ; Particulate matter ; Pavements ; Permeability ; Rain ; Rainfall ; Runoff ; Runoff volume ; Separation ; Simulators ; Stormwater ; Suspended particulate matter ; X ray microtomography</subject><ispartof>Water resources management, 2022-04, Vol.36 (6), p.1879-1895</ispartof><rights>The Author(s) 2022. corrected publication 2022</rights><rights>The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-18527f5037e3f6d8c991faa22d36820771d25865b12c450780fa25cc9abc4dc13</citedby><cites>FETCH-LOGICAL-c363t-18527f5037e3f6d8c991faa22d36820771d25865b12c450780fa25cc9abc4dc13</cites><orcidid>0000-0002-6777-8090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-022-03113-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-022-03113-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Marchioni, Mariana</creatorcontrib><creatorcontrib>Fedele, Roberto</creatorcontrib><creatorcontrib>Raimondi, Anita</creatorcontrib><creatorcontrib>Sansalone, John</creatorcontrib><creatorcontrib>Becciu, Gianfranco</creatorcontrib><title>Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often constructed as a wearing course for permeable pavements and on impervious pavements to reduce aquaplaning and noise. The pore structure of PA functions as a filter promoting particulate matter (PM) separation. The infiltrating flow characteristics are predominately dependent on pore diameter and pore interconnectivity. X-Ray microTomography (XRT) has successfully estimated these parameters that are otherwise difficult to obtain through conventional gravimetric methods. Pore structure parameters allow modeling of hydraulic conductivity (k) and filtration mechanisms; required to examine the material behavior for infiltration and PM separation. In this study, pore structure parameters were determined through XTR for three PA mixture designs. Additionally, the Kozeny-Kovàv model was implemented to estimate k. PM separation was evaluated using a pore-to-PM diameter categorical model. This filtration mechanism model was validated with data from a rainfall simulator. The filtration model provided a good correlation between measured and modeled data. The identification of filtration mechanisms and k facilitate the design and evaluation of permeable pavement systems as a best management practice (BMP) for runoff volume and peak flow as well as PM and PM-partitioned chemical separation.</description><subject>Asphalt</subject><subject>Atmospheric Sciences</subject><subject>Best management practices</subject><subject>Chemical separation</subject><subject>Civil Engineering</subject><subject>Composite materials</subject><subject>Design</subject><subject>Diameters</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Evaluation</subject><subject>Filtration</subject><subject>Flow characteristics</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulic conductivity</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Infiltration</subject><subject>Mathematical models</subject><subject>Noise reduction</subject><subject>Parameters</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Pavements</subject><subject>Permeability</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Runoff</subject><subject>Runoff volume</subject><subject>Separation</subject><subject>Simulators</subject><subject>Stormwater</subject><subject>Suspended particulate matter</subject><subject>X ray microtomography</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kE9LwzAYh4MoOKdfwFPAc_TN__Y4hjph4nATvYUsTV1H184kFfbtrVbw5um9PM_vhQehSwrXFEDfREqZygkwRoBTyok4QiMqNSdUSThGI8gZEKEFPUVnMW4Bei2HEVoufNh5u649nsT9xtYJzw5FsF1dOTxtm6Jzqfqs0gHbpsALG1Llutomjx9tSj7gpd_bYFPVNvi1Shv89rw6RyelraO_-L1j9HJ3u5rOyPzp_mE6mRPHFU-EZpLpUgLXnpeqyFye09JaxgquMgZa04LJTMk1ZU5I0BmUlknncrt2onCUj9HVsLsP7UfnYzLbtgtN_9IwJZUQQmXQU2ygXGhjDL40-1DtbDgYCuY7nhnimT6e-YlnRC_xQYo93Lz78Df9j_UF6ThxIw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Marchioni, Mariana</creator><creator>Fedele, Roberto</creator><creator>Raimondi, Anita</creator><creator>Sansalone, John</creator><creator>Becciu, Gianfranco</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6777-8090</orcidid></search><sort><creationdate>20220401</creationdate><title>Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT</title><author>Marchioni, Mariana ; Fedele, Roberto ; Raimondi, Anita ; Sansalone, John ; Becciu, Gianfranco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-18527f5037e3f6d8c991faa22d36820771d25865b12c450780fa25cc9abc4dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asphalt</topic><topic>Atmospheric Sciences</topic><topic>Best management practices</topic><topic>Chemical separation</topic><topic>Civil Engineering</topic><topic>Composite materials</topic><topic>Design</topic><topic>Diameters</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Evaluation</topic><topic>Filtration</topic><topic>Flow characteristics</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulic conductivity</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Infiltration</topic><topic>Mathematical models</topic><topic>Noise reduction</topic><topic>Parameters</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Pavements</topic><topic>Permeability</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Runoff</topic><topic>Runoff volume</topic><topic>Separation</topic><topic>Simulators</topic><topic>Stormwater</topic><topic>Suspended particulate matter</topic><topic>X ray microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marchioni, Mariana</creatorcontrib><creatorcontrib>Fedele, Roberto</creatorcontrib><creatorcontrib>Raimondi, Anita</creatorcontrib><creatorcontrib>Sansalone, John</creatorcontrib><creatorcontrib>Becciu, Gianfranco</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marchioni, Mariana</au><au>Fedele, Roberto</au><au>Raimondi, Anita</au><au>Sansalone, John</au><au>Becciu, Gianfranco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>36</volume><issue>6</issue><spage>1879</spage><epage>1895</epage><pages>1879-1895</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>Permeable asphalt (PA) is a composite material with an open graded mix design that provides a pore structure facilitating stormwater infiltration. PA is often constructed as a wearing course for permeable pavements and on impervious pavements to reduce aquaplaning and noise. The pore structure of PA functions as a filter promoting particulate matter (PM) separation. The infiltrating flow characteristics are predominately dependent on pore diameter and pore interconnectivity. X-Ray microTomography (XRT) has successfully estimated these parameters that are otherwise difficult to obtain through conventional gravimetric methods. Pore structure parameters allow modeling of hydraulic conductivity (k) and filtration mechanisms; required to examine the material behavior for infiltration and PM separation. In this study, pore structure parameters were determined through XTR for three PA mixture designs. Additionally, the Kozeny-Kovàv model was implemented to estimate k. PM separation was evaluated using a pore-to-PM diameter categorical model. This filtration mechanism model was validated with data from a rainfall simulator. The filtration model provided a good correlation between measured and modeled data. The identification of filtration mechanisms and k facilitate the design and evaluation of permeable pavement systems as a best management practice (BMP) for runoff volume and peak flow as well as PM and PM-partitioned chemical separation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-022-03113-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6777-8090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-4741 |
ispartof | Water resources management, 2022-04, Vol.36 (6), p.1879-1895 |
issn | 0920-4741 1573-1650 |
language | eng |
recordid | cdi_proquest_journals_2656444680 |
source | SpringerLink (Online service) |
subjects | Asphalt Atmospheric Sciences Best management practices Chemical separation Civil Engineering Composite materials Design Diameters Earth and Environmental Science Earth Sciences Environment Evaluation Filtration Flow characteristics Geotechnical Engineering & Applied Earth Sciences Hydraulic conductivity Hydrogeology Hydrology/Water Resources Infiltration Mathematical models Noise reduction Parameters Particulate emissions Particulate matter Pavements Permeability Rain Rainfall Runoff Runoff volume Separation Simulators Stormwater Suspended particulate matter X ray microtomography |
title | Permeable Asphalt Hydraulic Conductivity and Particulate Matter Separation With XRT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A09%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeable%20Asphalt%20Hydraulic%20Conductivity%20and%20Particulate%20Matter%20Separation%20With%20XRT&rft.jtitle=Water%20resources%20management&rft.au=Marchioni,%20Mariana&rft.date=2022-04-01&rft.volume=36&rft.issue=6&rft.spage=1879&rft.epage=1895&rft.pages=1879-1895&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-022-03113-4&rft_dat=%3Cproquest_cross%3E2656444680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656444680&rft_id=info:pmid/&rfr_iscdi=true |