Optimization of several surface treatment processes for alleviating fretting damage of a locking pin
The operational safety and reliability of a variable gauge train are affected by the anti-fretting wear performance of the locking mechanism. The main purpose of this study is to optimize the surface treatment process for a locking pin material under actual service conditions to alleviate fretting d...
Gespeichert in:
Veröffentlicht in: | Friction 2022-08, Vol.10 (8), p.1217-1233 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The operational safety and reliability of a variable gauge train are affected by the anti-fretting wear performance of the locking mechanism. The main purpose of this study is to optimize the surface treatment process for a locking pin material under actual service conditions to alleviate fretting damage. Based on the two basic principles of surface strengthening and friction reduction, a substrate (AISI 4135 steel) surface was treated by laser quenching (LQ), plasma nitriding (PN), and bonded MoS
2
coating. Systematic fretting wear tests were conducted, and the wear behavior and damage mechanism of various treated surfaces were comprehensively investigated. The results indicate that the wear resistances of the LQ- and PN-treated surfaces were significantly improved, and their main wear mechanisms were abrasive wear, delamination, and oxidation wear. The MoS
2
coating exhibits the lowest friction coefficient and energy dissipation due to its self-lubricating property, but it incurs the highest wear rate and failure in the form of plastic deformation. Furthermore, the rough compound layer with a high hardness on the PN-treated surface is conducive to the formation and maintenance of the third-body contact at the fretting interface, consequently resulting in a significant reduction in wear. An optimal surface treatment process for alleviating fretting damage of the locking pin is recommended via comprehensive evaluation, which provides a reference for the anti-fretting protection of related mechanical components. |
---|---|
ISSN: | 2223-7690 2223-7704 |
DOI: | 10.1007/s40544-021-0526-0 |