Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization

This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2018, Vol.9 (3)
Hauptverfasser: Machmudah, Affiani, Parman, Setyamartana, Baharom, M.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title International journal of advanced computer science & applications
container_volume 9
creator Machmudah, Affiani
Parman, Setyamartana
Baharom, M.B.
description This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.
doi_str_mv 10.14569/IJACSA.2018.090330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656421165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656421165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</originalsourceid><addsrcrecordid>eNotkFtLwzAUgIMoOOZ-gS8BnztzbZrHUbxMJxtOwbeQtalmtElNU2T-ervV83IOh-9c-AC4xmiOGU_l7fJpkW8Xc4JwNkcSUYrOwIRgniacC3R-qrMEI_FxCWZdt0dDUEnSjE6Azr2L1vW-7-BGxy-4qbVz1n1CX8Fn60yjoy10XR_gqyl7V2oX4Yt2tu1rHX2AfXeENzoMWG3g9keHBq7baBv7O4x6dwUuKl13Zvafp-D9_u4tf0xW64dlvlglBSUkJoLtduL4uymIrhgd3jOlFCVlupIVN7xCRhSsFJRWTDJCM0yHLiFESEyxpFNwM-5tg__uTRfV3vfBDScVSXnKCMYpHyg6UkXwXRdMpdpgGx0OCiN10qlGneqoU4066R8Dimin</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656421165</pqid></control><display><type>article</type><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</creator><creatorcontrib>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</creatorcontrib><description>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2018.090330</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Degrees of freedom ; Domains ; End effectors ; Genetic algorithms ; Heuristic methods ; Manipulators ; Optimization ; Particle swarm optimization ; Redundancy ; Robot arms ; Trajectory planning</subject><ispartof>International journal of advanced computer science &amp; applications, 2018, Vol.9 (3)</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Machmudah, Affiani</creatorcontrib><creatorcontrib>Parman, Setyamartana</creatorcontrib><creatorcontrib>Baharom, M.B.</creatorcontrib><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><title>International journal of advanced computer science &amp; applications</title><description>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</description><subject>Degrees of freedom</subject><subject>Domains</subject><subject>End effectors</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Redundancy</subject><subject>Robot arms</subject><subject>Trajectory planning</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFtLwzAUgIMoOOZ-gS8BnztzbZrHUbxMJxtOwbeQtalmtElNU2T-ervV83IOh-9c-AC4xmiOGU_l7fJpkW8Xc4JwNkcSUYrOwIRgniacC3R-qrMEI_FxCWZdt0dDUEnSjE6Azr2L1vW-7-BGxy-4qbVz1n1CX8Fn60yjoy10XR_gqyl7V2oX4Yt2tu1rHX2AfXeENzoMWG3g9keHBq7baBv7O4x6dwUuKl13Zvafp-D9_u4tf0xW64dlvlglBSUkJoLtduL4uymIrhgd3jOlFCVlupIVN7xCRhSsFJRWTDJCM0yHLiFESEyxpFNwM-5tg__uTRfV3vfBDScVSXnKCMYpHyg6UkXwXRdMpdpgGx0OCiN10qlGneqoU4066R8Dimin</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Machmudah, Affiani</creator><creator>Parman, Setyamartana</creator><creator>Baharom, M.B.</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><author>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Degrees of freedom</topic><topic>Domains</topic><topic>End effectors</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Redundancy</topic><topic>Robot arms</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Machmudah, Affiani</creatorcontrib><creatorcontrib>Parman, Setyamartana</creatorcontrib><creatorcontrib>Baharom, M.B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machmudah, Affiani</au><au>Parman, Setyamartana</au><au>Baharom, M.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2018</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2018.090330</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2018, Vol.9 (3)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2656421165
source EZB-FREE-00999 freely available EZB journals
subjects Degrees of freedom
Domains
End effectors
Genetic algorithms
Heuristic methods
Manipulators
Optimization
Particle swarm optimization
Redundancy
Robot arms
Trajectory planning
title Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Path%20Planning%20of%20Kinematically%20Redundant%20Manipulator%20using%20Particle%20Swarm%20Optimization&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Machmudah,%20Affiani&rft.date=2018&rft.volume=9&rft.issue=3&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2018.090330&rft_dat=%3Cproquest_cross%3E2656421165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656421165&rft_id=info:pmid/&rfr_iscdi=true