Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization
This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundanc...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2018, Vol.9 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 9 |
creator | Machmudah, Affiani Parman, Setyamartana Baharom, M.B. |
description | This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO. |
doi_str_mv | 10.14569/IJACSA.2018.090330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656421165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656421165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</originalsourceid><addsrcrecordid>eNotkFtLwzAUgIMoOOZ-gS8BnztzbZrHUbxMJxtOwbeQtalmtElNU2T-ervV83IOh-9c-AC4xmiOGU_l7fJpkW8Xc4JwNkcSUYrOwIRgniacC3R-qrMEI_FxCWZdt0dDUEnSjE6Azr2L1vW-7-BGxy-4qbVz1n1CX8Fn60yjoy10XR_gqyl7V2oX4Yt2tu1rHX2AfXeENzoMWG3g9keHBq7baBv7O4x6dwUuKl13Zvafp-D9_u4tf0xW64dlvlglBSUkJoLtduL4uymIrhgd3jOlFCVlupIVN7xCRhSsFJRWTDJCM0yHLiFESEyxpFNwM-5tg__uTRfV3vfBDScVSXnKCMYpHyg6UkXwXRdMpdpgGx0OCiN10qlGneqoU4066R8Dimin</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656421165</pqid></control><display><type>article</type><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</creator><creatorcontrib>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</creatorcontrib><description>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2018.090330</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Degrees of freedom ; Domains ; End effectors ; Genetic algorithms ; Heuristic methods ; Manipulators ; Optimization ; Particle swarm optimization ; Redundancy ; Robot arms ; Trajectory planning</subject><ispartof>International journal of advanced computer science & applications, 2018, Vol.9 (3)</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Machmudah, Affiani</creatorcontrib><creatorcontrib>Parman, Setyamartana</creatorcontrib><creatorcontrib>Baharom, M.B.</creatorcontrib><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><title>International journal of advanced computer science & applications</title><description>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</description><subject>Degrees of freedom</subject><subject>Domains</subject><subject>End effectors</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Manipulators</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Redundancy</subject><subject>Robot arms</subject><subject>Trajectory planning</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFtLwzAUgIMoOOZ-gS8BnztzbZrHUbxMJxtOwbeQtalmtElNU2T-ervV83IOh-9c-AC4xmiOGU_l7fJpkW8Xc4JwNkcSUYrOwIRgniacC3R-qrMEI_FxCWZdt0dDUEnSjE6Azr2L1vW-7-BGxy-4qbVz1n1CX8Fn60yjoy10XR_gqyl7V2oX4Yt2tu1rHX2AfXeENzoMWG3g9keHBq7baBv7O4x6dwUuKl13Zvafp-D9_u4tf0xW64dlvlglBSUkJoLtduL4uymIrhgd3jOlFCVlupIVN7xCRhSsFJRWTDJCM0yHLiFESEyxpFNwM-5tg__uTRfV3vfBDScVSXnKCMYpHyg6UkXwXRdMpdpgGx0OCiN10qlGneqoU4066R8Dimin</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Machmudah, Affiani</creator><creator>Parman, Setyamartana</creator><creator>Baharom, M.B.</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2018</creationdate><title>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</title><author>Machmudah, Affiani ; Parman, Setyamartana ; Baharom, M.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-74bb70330ec2af43268ed97d34af9f5e5f0e7c4d733f494238135e52227913193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Degrees of freedom</topic><topic>Domains</topic><topic>End effectors</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Manipulators</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Redundancy</topic><topic>Robot arms</topic><topic>Trajectory planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Machmudah, Affiani</creatorcontrib><creatorcontrib>Parman, Setyamartana</creatorcontrib><creatorcontrib>Baharom, M.B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machmudah, Affiani</au><au>Parman, Setyamartana</au><au>Baharom, M.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2018</date><risdate>2018</risdate><volume>9</volume><issue>3</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>This paper addresses a problem of a continuous path planning of a redundant manipulator where an end-effector needs to follow a desired path. Based on a geometrical analysis, feasible postures of a self-motion are mapped into an interval so that there will be an angle domain boundary and a redundancy resolution to track the desired path lies within this boundary. To choose a best solution among many possible solutions, meta-heuristic optimizations, namely, a Genetic Algorithm (GA), a Particle Swarm Optimization (PSO), and a Grey Wolf Optimizer (GWO) will be employed with an optimization objective to minimize a joint angle travelling distance. To achieve n-connectivity of sampling points, the angle domain trajectories are modelled using a sinusoidal function generated inside the angle domain boundary. A complex geometrical path obtained from Bezier and algebraic curves are used as the traced path that should be followed by a 3-Degree of Freedom (DOF) arm robot manipulator and a hyper-redundant manipulator. The path from the PSO yields better results than that of the GA and GWO.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2018.090330</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2018, Vol.9 (3) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2656421165 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Degrees of freedom Domains End effectors Genetic algorithms Heuristic methods Manipulators Optimization Particle swarm optimization Redundancy Robot arms Trajectory planning |
title | Continuous Path Planning of Kinematically Redundant Manipulator using Particle Swarm Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A13%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Path%20Planning%20of%20Kinematically%20Redundant%20Manipulator%20using%20Particle%20Swarm%20Optimization&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Machmudah,%20Affiani&rft.date=2018&rft.volume=9&rft.issue=3&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2018.090330&rft_dat=%3Cproquest_cross%3E2656421165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656421165&rft_id=info:pmid/&rfr_iscdi=true |