Clustering of Multidimensional Objects in the Formation of Personalized Diets
When developing personalized diets (personalized nutrition) it is necessary to take into account individual physiological nutritional needs of the body associated with the presence of gene polymorphism among consumers. This greatly complicates the development of rations and increases their cost. A m...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2019, Vol.10 (2) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 10 |
creator | Ivanova, Valentina N. A., Igor A., Natalia A., Marina I., Yury I., Vladimir V., Igor |
description | When developing personalized diets (personalized nutrition) it is necessary to take into account individual physiological nutritional needs of the body associated with the presence of gene polymorphism among consumers. This greatly complicates the development of rations and increases their cost. A methodology for the formation of target diets based on the multidimensional objects clustering method has been proposed. Clustering in the experimental group was carried out on the basis of a calculation of the integral assessment of reliable risks of developing decease conditions according to selected metabolic processes. And genetic data of participants was taken into account. The use of the proposed method allowed reducing the needed number of typical solutions of individual diets for the experimental group from 10 to 3. |
doi_str_mv | 10.14569/IJACSA.2019.0100206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656392098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656392098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-df4da69824ab2a56c04055b4bc528c9753c0b718aa24221e61c52f04a8d971983</originalsourceid><addsrcrecordid>eNotkFFLwzAQx4MoOOa-gQ8BnzsvaZImj6M6nWxMUMG3kLapZnTtTNIH_fR23e7lDv4_jrsfQrcE5oRxoe5XL4v8bTGnQNQcCAAFcYEmlHCRcJ7B5TjLhED2eY1mIexgqFRRIdMJ2uRNH6L1rv3CXY03fRNd5fa2Da5rTYO3xc6WMWDX4vht8bLzexOH6Ai_Wh-OkPuzFX5wNoYbdFWbJtjZuU_Rx_LxPX9O1tunVb5YJ2VKeUyqmlVGKEmZKajhogQGnBesKDmVpcp4WkKREWkMZZQSK8gQ1MCMrFRGlEyn6O609-C7n96GqHdd74dTgqaCi-E5GCl2okrfheBtrQ_e7Y3_1QT06E6f3OmjO312l_4D9NNhTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656392098</pqid></control><display><type>article</type><title>Clustering of Multidimensional Objects in the Formation of Personalized Diets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ivanova, Valentina N. ; A., Igor ; A., Natalia ; A., Marina ; I., Yury ; I., Vladimir ; V., Igor</creator><creatorcontrib>Ivanova, Valentina N. ; A., Igor ; A., Natalia ; A., Marina ; I., Yury ; I., Vladimir ; V., Igor</creatorcontrib><description>When developing personalized diets (personalized nutrition) it is necessary to take into account individual physiological nutritional needs of the body associated with the presence of gene polymorphism among consumers. This greatly complicates the development of rations and increases their cost. A methodology for the formation of target diets based on the multidimensional objects clustering method has been proposed. Clustering in the experimental group was carried out on the basis of a calculation of the integral assessment of reliable risks of developing decease conditions according to selected metabolic processes. And genetic data of participants was taken into account. The use of the proposed method allowed reducing the needed number of typical solutions of individual diets for the experimental group from 10 to 3.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2019.0100206</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Cancer ; Clustering ; Computer science ; Customization ; Data mining ; Diet ; Disease ; Dopamine ; Enzymes ; Food ; Genes ; Genetic disorders ; Genomes ; Metabolism ; Methods ; Narcotics ; Nutrition ; Polymorphism</subject><ispartof>International journal of advanced computer science & applications, 2019, Vol.10 (2)</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-df4da69824ab2a56c04055b4bc528c9753c0b718aa24221e61c52f04a8d971983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ivanova, Valentina N.</creatorcontrib><creatorcontrib>A., Igor</creatorcontrib><creatorcontrib>A., Natalia</creatorcontrib><creatorcontrib>A., Marina</creatorcontrib><creatorcontrib>I., Yury</creatorcontrib><creatorcontrib>I., Vladimir</creatorcontrib><creatorcontrib>V., Igor</creatorcontrib><title>Clustering of Multidimensional Objects in the Formation of Personalized Diets</title><title>International journal of advanced computer science & applications</title><description>When developing personalized diets (personalized nutrition) it is necessary to take into account individual physiological nutritional needs of the body associated with the presence of gene polymorphism among consumers. This greatly complicates the development of rations and increases their cost. A methodology for the formation of target diets based on the multidimensional objects clustering method has been proposed. Clustering in the experimental group was carried out on the basis of a calculation of the integral assessment of reliable risks of developing decease conditions according to selected metabolic processes. And genetic data of participants was taken into account. The use of the proposed method allowed reducing the needed number of typical solutions of individual diets for the experimental group from 10 to 3.</description><subject>Cancer</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Customization</subject><subject>Data mining</subject><subject>Diet</subject><subject>Disease</subject><subject>Dopamine</subject><subject>Enzymes</subject><subject>Food</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Genomes</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Narcotics</subject><subject>Nutrition</subject><subject>Polymorphism</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFFLwzAQx4MoOOa-gQ8BnzsvaZImj6M6nWxMUMG3kLapZnTtTNIH_fR23e7lDv4_jrsfQrcE5oRxoe5XL4v8bTGnQNQcCAAFcYEmlHCRcJ7B5TjLhED2eY1mIexgqFRRIdMJ2uRNH6L1rv3CXY03fRNd5fa2Da5rTYO3xc6WMWDX4vht8bLzexOH6Ai_Wh-OkPuzFX5wNoYbdFWbJtjZuU_Rx_LxPX9O1tunVb5YJ2VKeUyqmlVGKEmZKajhogQGnBesKDmVpcp4WkKREWkMZZQSK8gQ1MCMrFRGlEyn6O609-C7n96GqHdd74dTgqaCi-E5GCl2okrfheBtrQ_e7Y3_1QT06E6f3OmjO312l_4D9NNhTw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ivanova, Valentina N.</creator><creator>A., Igor</creator><creator>A., Natalia</creator><creator>A., Marina</creator><creator>I., Yury</creator><creator>I., Vladimir</creator><creator>V., Igor</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2019</creationdate><title>Clustering of Multidimensional Objects in the Formation of Personalized Diets</title><author>Ivanova, Valentina N. ; A., Igor ; A., Natalia ; A., Marina ; I., Yury ; I., Vladimir ; V., Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-df4da69824ab2a56c04055b4bc528c9753c0b718aa24221e61c52f04a8d971983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Customization</topic><topic>Data mining</topic><topic>Diet</topic><topic>Disease</topic><topic>Dopamine</topic><topic>Enzymes</topic><topic>Food</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Genomes</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Narcotics</topic><topic>Nutrition</topic><topic>Polymorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Valentina N.</creatorcontrib><creatorcontrib>A., Igor</creatorcontrib><creatorcontrib>A., Natalia</creatorcontrib><creatorcontrib>A., Marina</creatorcontrib><creatorcontrib>I., Yury</creatorcontrib><creatorcontrib>I., Vladimir</creatorcontrib><creatorcontrib>V., Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Valentina N.</au><au>A., Igor</au><au>A., Natalia</au><au>A., Marina</au><au>I., Yury</au><au>I., Vladimir</au><au>V., Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering of Multidimensional Objects in the Formation of Personalized Diets</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2019</date><risdate>2019</risdate><volume>10</volume><issue>2</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>When developing personalized diets (personalized nutrition) it is necessary to take into account individual physiological nutritional needs of the body associated with the presence of gene polymorphism among consumers. This greatly complicates the development of rations and increases their cost. A methodology for the formation of target diets based on the multidimensional objects clustering method has been proposed. Clustering in the experimental group was carried out on the basis of a calculation of the integral assessment of reliable risks of developing decease conditions according to selected metabolic processes. And genetic data of participants was taken into account. The use of the proposed method allowed reducing the needed number of typical solutions of individual diets for the experimental group from 10 to 3.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2019.0100206</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2019, Vol.10 (2) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2656392098 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cancer Clustering Computer science Customization Data mining Diet Disease Dopamine Enzymes Food Genes Genetic disorders Genomes Metabolism Methods Narcotics Nutrition Polymorphism |
title | Clustering of Multidimensional Objects in the Formation of Personalized Diets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T08%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20of%20Multidimensional%20Objects%20in%20the%20Formation%20of%20Personalized%20Diets&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Ivanova,%20Valentina%20N.&rft.date=2019&rft.volume=10&rft.issue=2&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2019.0100206&rft_dat=%3Cproquest_cross%3E2656392098%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656392098&rft_id=info:pmid/&rfr_iscdi=true |