Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network
Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet tra...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2019, Vol.10 (5) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 10 |
creator | Rahman, Md. Asadur Khanam, Farzana Kazem, Md Khurshed, Mohammad Ahmad, Mohiuddin |
description | Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet transformation (WPT), and two-stage machine learning algorithm to classify four-class MI EEG signal. This work includes four-class MI events by an imaginary lifting of the left hand, right hand, left foot, and Right Foot. The main challenge of this work is to discriminate the similar lobe EEG signal pattern such as left foot VS left hand. Another critical problem is to identify the MI movements of two different feet because their activation level is very low and show an almost similar pattern. This work firstly uses the PCA to reduce the signal dimensions of the left and right lobe of the brain. Then, WPT is used to extract the feature from the different class EEG signal. Finally, the artificial neural network is trained into two stages – 1st stage identifies the lobe from the signal pattern and the 2nd stage identifies whether the signal is of MI hand or MI foot movement. The proposed method is applied to the 4-class MI movement related EEG signals of 15 participants and found excellent classification accuracy (>74% on average). The outcomes of the proposed method prove its effectiveness in practical BCI implementation. |
doi_str_mv | 10.14569/IJACSA.2019.0100562 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656386967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656386967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-d70e393fd3f43b3f2343b924a3c186db9579456ed79b9d932041d65179a72ad83</originalsourceid><addsrcrecordid>eNotkF9PwjAUxRejiQT5Bj408dVh_6zt-rgsgBhEEzD61nRrR4ZjxXaT8O2twH25N7nn3Nzzi6J7BMcooUw8zV-yfJWNMURiDBGElOGraIARZTGlHF6f5jRGkH_dRiPvtzAUEZilZBAVU9u7OG-U9-DVdtaB-U5tjDuCyWQGVvWmVQ04reuqLlVX2xb0vm434D3PHsGn-jWN6YBqNVgfbLzqghksTe-CbWm6g3Xfd9FNpRpvRpc-jD6mk3X-HC_eZvM8W8QlwbSLNYeGCFJpUiWkIBUmoQmcKFKilOlCUC5CXqO5KIQWBMMEaUYRF4pjpVMyjB7Od_fO_vTGd3IbsoX_vcSMMpIywXhQJWdV6az3zlRy7-qdckeJoDwBlWeg8h-ovAAlf-FNZz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656386967</pqid></control><display><type>article</type><title>Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rahman, Md. Asadur ; Khanam, Farzana ; Kazem, Md ; Khurshed, Mohammad ; Ahmad, Mohiuddin</creator><creatorcontrib>Rahman, Md. Asadur ; Khanam, Farzana ; Kazem, Md ; Khurshed, Mohammad ; Ahmad, Mohiuddin</creatorcontrib><description>Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet transformation (WPT), and two-stage machine learning algorithm to classify four-class MI EEG signal. This work includes four-class MI events by an imaginary lifting of the left hand, right hand, left foot, and Right Foot. The main challenge of this work is to discriminate the similar lobe EEG signal pattern such as left foot VS left hand. Another critical problem is to identify the MI movements of two different feet because their activation level is very low and show an almost similar pattern. This work firstly uses the PCA to reduce the signal dimensions of the left and right lobe of the brain. Then, WPT is used to extract the feature from the different class EEG signal. Finally, the artificial neural network is trained into two stages – 1st stage identifies the lobe from the signal pattern and the 2nd stage identifies whether the signal is of MI hand or MI foot movement. The proposed method is applied to the 4-class MI movement related EEG signals of 15 participants and found excellent classification accuracy (>74% on average). The outcomes of the proposed method prove its effectiveness in practical BCI implementation.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2019.0100562</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Algorithms ; Artificial neural networks ; Electroencephalography ; Feature extraction ; Human-computer interface ; Image classification ; Machine learning ; Neural networks ; Principal components analysis ; Signal classification ; Wavelet analysis</subject><ispartof>International journal of advanced computer science & applications, 2019, Vol.10 (5)</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-d70e393fd3f43b3f2343b924a3c186db9579456ed79b9d932041d65179a72ad83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27928,27929,27930</link.rule.ids></links><search><creatorcontrib>Rahman, Md. Asadur</creatorcontrib><creatorcontrib>Khanam, Farzana</creatorcontrib><creatorcontrib>Kazem, Md</creatorcontrib><creatorcontrib>Khurshed, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Mohiuddin</creatorcontrib><title>Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network</title><title>International journal of advanced computer science & applications</title><description>Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet transformation (WPT), and two-stage machine learning algorithm to classify four-class MI EEG signal. This work includes four-class MI events by an imaginary lifting of the left hand, right hand, left foot, and Right Foot. The main challenge of this work is to discriminate the similar lobe EEG signal pattern such as left foot VS left hand. Another critical problem is to identify the MI movements of two different feet because their activation level is very low and show an almost similar pattern. This work firstly uses the PCA to reduce the signal dimensions of the left and right lobe of the brain. Then, WPT is used to extract the feature from the different class EEG signal. Finally, the artificial neural network is trained into two stages – 1st stage identifies the lobe from the signal pattern and the 2nd stage identifies whether the signal is of MI hand or MI foot movement. The proposed method is applied to the 4-class MI movement related EEG signals of 15 participants and found excellent classification accuracy (>74% on average). The outcomes of the proposed method prove its effectiveness in practical BCI implementation.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Human-computer interface</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Principal components analysis</subject><subject>Signal classification</subject><subject>Wavelet analysis</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkF9PwjAUxRejiQT5Bj408dVh_6zt-rgsgBhEEzD61nRrR4ZjxXaT8O2twH25N7nn3Nzzi6J7BMcooUw8zV-yfJWNMURiDBGElOGraIARZTGlHF6f5jRGkH_dRiPvtzAUEZilZBAVU9u7OG-U9-DVdtaB-U5tjDuCyWQGVvWmVQ04reuqLlVX2xb0vm434D3PHsGn-jWN6YBqNVgfbLzqghksTe-CbWm6g3Xfd9FNpRpvRpc-jD6mk3X-HC_eZvM8W8QlwbSLNYeGCFJpUiWkIBUmoQmcKFKilOlCUC5CXqO5KIQWBMMEaUYRF4pjpVMyjB7Od_fO_vTGd3IbsoX_vcSMMpIywXhQJWdV6az3zlRy7-qdckeJoDwBlWeg8h-ovAAlf-FNZz4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Rahman, Md. Asadur</creator><creator>Khanam, Farzana</creator><creator>Kazem, Md</creator><creator>Khurshed, Mohammad</creator><creator>Ahmad, Mohiuddin</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2019</creationdate><title>Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network</title><author>Rahman, Md. Asadur ; Khanam, Farzana ; Kazem, Md ; Khurshed, Mohammad ; Ahmad, Mohiuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-d70e393fd3f43b3f2343b924a3c186db9579456ed79b9d932041d65179a72ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Human-computer interface</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Principal components analysis</topic><topic>Signal classification</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md. Asadur</creatorcontrib><creatorcontrib>Khanam, Farzana</creatorcontrib><creatorcontrib>Kazem, Md</creatorcontrib><creatorcontrib>Khurshed, Mohammad</creatorcontrib><creatorcontrib>Ahmad, Mohiuddin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md. Asadur</au><au>Khanam, Farzana</au><au>Kazem, Md</au><au>Khurshed, Mohammad</au><au>Ahmad, Mohiuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2019</date><risdate>2019</risdate><volume>10</volume><issue>5</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Electroencephalogram (EEG) is the most significant signal for brain-computer interfaces (BCI). Nowadays, motor imagery (MI) movement based BCI is highly accepted method for. This paper proposes a novel method based on the combined utilization of principal component analysis (PCA), wavelet packet transformation (WPT), and two-stage machine learning algorithm to classify four-class MI EEG signal. This work includes four-class MI events by an imaginary lifting of the left hand, right hand, left foot, and Right Foot. The main challenge of this work is to discriminate the similar lobe EEG signal pattern such as left foot VS left hand. Another critical problem is to identify the MI movements of two different feet because their activation level is very low and show an almost similar pattern. This work firstly uses the PCA to reduce the signal dimensions of the left and right lobe of the brain. Then, WPT is used to extract the feature from the different class EEG signal. Finally, the artificial neural network is trained into two stages – 1st stage identifies the lobe from the signal pattern and the 2nd stage identifies whether the signal is of MI hand or MI foot movement. The proposed method is applied to the 4-class MI movement related EEG signals of 15 participants and found excellent classification accuracy (>74% on average). The outcomes of the proposed method prove its effectiveness in practical BCI implementation.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2019.0100562</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2019, Vol.10 (5) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2656386967 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Electroencephalography Feature extraction Human-computer interface Image classification Machine learning Neural networks Principal components analysis Signal classification Wavelet analysis |
title | Four-Class Motor Imagery EEG Signal Classification using PCA, Wavelet and Two-Stage Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-Class%20Motor%20Imagery%20EEG%20Signal%20Classification%20using%20PCA,%20Wavelet%20and%20Two-Stage%20Neural%20Network&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Rahman,%20Md.%20Asadur&rft.date=2019&rft.volume=10&rft.issue=5&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2019.0100562&rft_dat=%3Cproquest_cross%3E2656386967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656386967&rft_id=info:pmid/&rfr_iscdi=true |