Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid

A rare-earth element (REE) is one of the minerals with many resources in Indonesia and lanthanum is one of REE. Lanthanum is widely used as a material for x-ray screens, glass lenses, optical fiber, capacitor batteries, and ceramics. Electrodeposition is a metal deposition process. The advantages of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2022-04, Vol.1017 (1), p.12011
Hauptverfasser: Cahyanegoro, A. G., Sudibyo, Badaruddin, M., Sugiyanto, Nurjaman, Fajar, Supriyatna, Yayat Iman, Prasetyo, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12011
container_title IOP conference series. Earth and environmental science
container_volume 1017
creator Cahyanegoro, A. G.
Sudibyo
Badaruddin, M.
Sugiyanto
Nurjaman, Fajar
Supriyatna, Yayat Iman
Prasetyo, Erik
description A rare-earth element (REE) is one of the minerals with many resources in Indonesia and lanthanum is one of REE. Lanthanum is widely used as a material for x-ray screens, glass lenses, optical fiber, capacitor batteries, and ceramics. Electrodeposition is a metal deposition process. The advantages of electrodeposition are easy and inexpensive. The method is simple since it can be done at room temperature, and it is inexpensive because it only requires basic equipment. However, there is a drawback to conventional electrodeposition: the roughness of the resultant layer (non-uniform crystal growth). Magnetoelectrodeposition (MED) is a solution for solving this problem. We employed the MED method in this study, which is the electrodeposition procedure under the influence of a magnetic field, and there has been no previous research on lanthanum MED. The electrode area, magnetic field strength, electroactive concentration, diffusion coefficient, and kinematic electrolyte viscosity were variables used in this study. The lanthanum MED in this study used 98% lanthanum (III) chloride heptahydrate (LaCl 3 .7H 2 O) for analysis from Merck, which was leached at a particular concentration of sulfuric acid (H 2 SO 4 ), using platinum electrodes in three electrochemical cells, and varying the magnetic field strength from 0 to 0.08 Tesla. The results showed that the stronger the magnetic field, the greater the limiting current for lanthanum electrodeposition. The effect of electrode area and electroactive concentration also gives rise to the limiting current. Meanwhile, the viscosity of the solution and the diffusion coefficient will cause a reduction in limiting the current value.
doi_str_mv 10.1088/1755-1315/1017/1/012011
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2656249563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656249563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2731-746b7f75f468f078a3f0ec91472db55a576f36d0b7c820e5cf266fb9b599babe3</originalsourceid><addsrcrecordid>eNqFkM1KxDAURoMoOI4-gwE3uqhNmiZplzKMWhhwMboOaX5sh05T0xSZt7elMiIIru6F79z7wQHgGqN7jLIsxpzSCBNMY4wwj3GMcIIwPgGLY3J63BE_Bxd9v0OI8ZTkC2C2YdAH6Czcy_fWBGcao4J32nSur0Pt2ilrZBsq2Q57eFsUxR1UVeN8rQ2sTBdkddBeBgMbI1VlNPysQwX7obGDrxWUqtaX4MzKpjdX33MJ3h7Xr6vnaPPyVKweNpFKOMERT1nJLac2ZZlFPJPEIqNynPJEl5RKypklTKOSqyxBhiqbMGbLvKR5XsrSkCW4mf923n0Mpg9i5wbfjpUiYZQlaU4ZGSk-U8q7vvfGis7Xe-kPAiMxORWTLTGZE5NTgcXsdLy8my9r1_28Xq-3vznRaTuy5A_2v4YvbVSGnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656249563</pqid></control><display><type>article</type><title>Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Cahyanegoro, A. G. ; Sudibyo ; Badaruddin, M. ; Sugiyanto ; Nurjaman, Fajar ; Supriyatna, Yayat Iman ; Prasetyo, Erik</creator><creatorcontrib>Cahyanegoro, A. G. ; Sudibyo ; Badaruddin, M. ; Sugiyanto ; Nurjaman, Fajar ; Supriyatna, Yayat Iman ; Prasetyo, Erik</creatorcontrib><description>A rare-earth element (REE) is one of the minerals with many resources in Indonesia and lanthanum is one of REE. Lanthanum is widely used as a material for x-ray screens, glass lenses, optical fiber, capacitor batteries, and ceramics. Electrodeposition is a metal deposition process. The advantages of electrodeposition are easy and inexpensive. The method is simple since it can be done at room temperature, and it is inexpensive because it only requires basic equipment. However, there is a drawback to conventional electrodeposition: the roughness of the resultant layer (non-uniform crystal growth). Magnetoelectrodeposition (MED) is a solution for solving this problem. We employed the MED method in this study, which is the electrodeposition procedure under the influence of a magnetic field, and there has been no previous research on lanthanum MED. The electrode area, magnetic field strength, electroactive concentration, diffusion coefficient, and kinematic electrolyte viscosity were variables used in this study. The lanthanum MED in this study used 98% lanthanum (III) chloride heptahydrate (LaCl 3 .7H 2 O) for analysis from Merck, which was leached at a particular concentration of sulfuric acid (H 2 SO 4 ), using platinum electrodes in three electrochemical cells, and varying the magnetic field strength from 0 to 0.08 Tesla. The results showed that the stronger the magnetic field, the greater the limiting current for lanthanum electrodeposition. The effect of electrode area and electroactive concentration also gives rise to the limiting current. Meanwhile, the viscosity of the solution and the diffusion coefficient will cause a reduction in limiting the current value.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/1017/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Batteries ; Ceramic fibers ; Chlorides ; Constraining ; Crystal growth ; Diffusion coefficient ; Electrochemical cells ; Electrochemistry ; Electrodeposition ; Electrodes ; Electrolytic cells ; Field strength ; Lanthanum ; Lanthanum chlorides ; limiting current ; Magnetic fields ; Magnetic lenses ; magnetoelectrodeposition ; Minerals ; Optical fibers ; Platinum ; Pollutant deposition ; Rare earth elements ; Room temperature ; Sulfuric acid ; Temperature requirements ; Viscosity</subject><ispartof>IOP conference series. Earth and environmental science, 2022-04, Vol.1017 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2731-746b7f75f468f078a3f0ec91472db55a576f36d0b7c820e5cf266fb9b599babe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/1017/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Cahyanegoro, A. G.</creatorcontrib><creatorcontrib>Sudibyo</creatorcontrib><creatorcontrib>Badaruddin, M.</creatorcontrib><creatorcontrib>Sugiyanto</creatorcontrib><creatorcontrib>Nurjaman, Fajar</creatorcontrib><creatorcontrib>Supriyatna, Yayat Iman</creatorcontrib><creatorcontrib>Prasetyo, Erik</creatorcontrib><title>Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>A rare-earth element (REE) is one of the minerals with many resources in Indonesia and lanthanum is one of REE. Lanthanum is widely used as a material for x-ray screens, glass lenses, optical fiber, capacitor batteries, and ceramics. Electrodeposition is a metal deposition process. The advantages of electrodeposition are easy and inexpensive. The method is simple since it can be done at room temperature, and it is inexpensive because it only requires basic equipment. However, there is a drawback to conventional electrodeposition: the roughness of the resultant layer (non-uniform crystal growth). Magnetoelectrodeposition (MED) is a solution for solving this problem. We employed the MED method in this study, which is the electrodeposition procedure under the influence of a magnetic field, and there has been no previous research on lanthanum MED. The electrode area, magnetic field strength, electroactive concentration, diffusion coefficient, and kinematic electrolyte viscosity were variables used in this study. The lanthanum MED in this study used 98% lanthanum (III) chloride heptahydrate (LaCl 3 .7H 2 O) for analysis from Merck, which was leached at a particular concentration of sulfuric acid (H 2 SO 4 ), using platinum electrodes in three electrochemical cells, and varying the magnetic field strength from 0 to 0.08 Tesla. The results showed that the stronger the magnetic field, the greater the limiting current for lanthanum electrodeposition. The effect of electrode area and electroactive concentration also gives rise to the limiting current. Meanwhile, the viscosity of the solution and the diffusion coefficient will cause a reduction in limiting the current value.</description><subject>Batteries</subject><subject>Ceramic fibers</subject><subject>Chlorides</subject><subject>Constraining</subject><subject>Crystal growth</subject><subject>Diffusion coefficient</subject><subject>Electrochemical cells</subject><subject>Electrochemistry</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Field strength</subject><subject>Lanthanum</subject><subject>Lanthanum chlorides</subject><subject>limiting current</subject><subject>Magnetic fields</subject><subject>Magnetic lenses</subject><subject>magnetoelectrodeposition</subject><subject>Minerals</subject><subject>Optical fibers</subject><subject>Platinum</subject><subject>Pollutant deposition</subject><subject>Rare earth elements</subject><subject>Room temperature</subject><subject>Sulfuric acid</subject><subject>Temperature requirements</subject><subject>Viscosity</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkM1KxDAURoMoOI4-gwE3uqhNmiZplzKMWhhwMboOaX5sh05T0xSZt7elMiIIru6F79z7wQHgGqN7jLIsxpzSCBNMY4wwj3GMcIIwPgGLY3J63BE_Bxd9v0OI8ZTkC2C2YdAH6Czcy_fWBGcao4J32nSur0Pt2ilrZBsq2Q57eFsUxR1UVeN8rQ2sTBdkddBeBgMbI1VlNPysQwX7obGDrxWUqtaX4MzKpjdX33MJ3h7Xr6vnaPPyVKweNpFKOMERT1nJLac2ZZlFPJPEIqNynPJEl5RKypklTKOSqyxBhiqbMGbLvKR5XsrSkCW4mf923n0Mpg9i5wbfjpUiYZQlaU4ZGSk-U8q7vvfGis7Xe-kPAiMxORWTLTGZE5NTgcXsdLy8my9r1_28Xq-3vznRaTuy5A_2v4YvbVSGnA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cahyanegoro, A. G.</creator><creator>Sudibyo</creator><creator>Badaruddin, M.</creator><creator>Sugiyanto</creator><creator>Nurjaman, Fajar</creator><creator>Supriyatna, Yayat Iman</creator><creator>Prasetyo, Erik</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20220401</creationdate><title>Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid</title><author>Cahyanegoro, A. G. ; Sudibyo ; Badaruddin, M. ; Sugiyanto ; Nurjaman, Fajar ; Supriyatna, Yayat Iman ; Prasetyo, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2731-746b7f75f468f078a3f0ec91472db55a576f36d0b7c820e5cf266fb9b599babe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Ceramic fibers</topic><topic>Chlorides</topic><topic>Constraining</topic><topic>Crystal growth</topic><topic>Diffusion coefficient</topic><topic>Electrochemical cells</topic><topic>Electrochemistry</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Field strength</topic><topic>Lanthanum</topic><topic>Lanthanum chlorides</topic><topic>limiting current</topic><topic>Magnetic fields</topic><topic>Magnetic lenses</topic><topic>magnetoelectrodeposition</topic><topic>Minerals</topic><topic>Optical fibers</topic><topic>Platinum</topic><topic>Pollutant deposition</topic><topic>Rare earth elements</topic><topic>Room temperature</topic><topic>Sulfuric acid</topic><topic>Temperature requirements</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cahyanegoro, A. G.</creatorcontrib><creatorcontrib>Sudibyo</creatorcontrib><creatorcontrib>Badaruddin, M.</creatorcontrib><creatorcontrib>Sugiyanto</creatorcontrib><creatorcontrib>Nurjaman, Fajar</creatorcontrib><creatorcontrib>Supriyatna, Yayat Iman</creatorcontrib><creatorcontrib>Prasetyo, Erik</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cahyanegoro, A. G.</au><au>Sudibyo</au><au>Badaruddin, M.</au><au>Sugiyanto</au><au>Nurjaman, Fajar</au><au>Supriyatna, Yayat Iman</au><au>Prasetyo, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>1017</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>A rare-earth element (REE) is one of the minerals with many resources in Indonesia and lanthanum is one of REE. Lanthanum is widely used as a material for x-ray screens, glass lenses, optical fiber, capacitor batteries, and ceramics. Electrodeposition is a metal deposition process. The advantages of electrodeposition are easy and inexpensive. The method is simple since it can be done at room temperature, and it is inexpensive because it only requires basic equipment. However, there is a drawback to conventional electrodeposition: the roughness of the resultant layer (non-uniform crystal growth). Magnetoelectrodeposition (MED) is a solution for solving this problem. We employed the MED method in this study, which is the electrodeposition procedure under the influence of a magnetic field, and there has been no previous research on lanthanum MED. The electrode area, magnetic field strength, electroactive concentration, diffusion coefficient, and kinematic electrolyte viscosity were variables used in this study. The lanthanum MED in this study used 98% lanthanum (III) chloride heptahydrate (LaCl 3 .7H 2 O) for analysis from Merck, which was leached at a particular concentration of sulfuric acid (H 2 SO 4 ), using platinum electrodes in three electrochemical cells, and varying the magnetic field strength from 0 to 0.08 Tesla. The results showed that the stronger the magnetic field, the greater the limiting current for lanthanum electrodeposition. The effect of electrode area and electroactive concentration also gives rise to the limiting current. Meanwhile, the viscosity of the solution and the diffusion coefficient will cause a reduction in limiting the current value.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/1017/1/012011</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2022-04, Vol.1017 (1), p.12011
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2656249563
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Batteries
Ceramic fibers
Chlorides
Constraining
Crystal growth
Diffusion coefficient
Electrochemical cells
Electrochemistry
Electrodeposition
Electrodes
Electrolytic cells
Field strength
Lanthanum
Lanthanum chlorides
limiting current
Magnetic fields
Magnetic lenses
magnetoelectrodeposition
Minerals
Optical fibers
Platinum
Pollutant deposition
Rare earth elements
Room temperature
Sulfuric acid
Temperature requirements
Viscosity
title Study of magnetoelectrodeposition of lanthanum (III) chloride heptahydrate leached with sulfuric acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A16%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20magnetoelectrodeposition%20of%20lanthanum%20(III)%20chloride%20heptahydrate%20leached%20with%20sulfuric%20acid&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Cahyanegoro,%20A.%20G.&rft.date=2022-04-01&rft.volume=1017&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/1017/1/012011&rft_dat=%3Cproquest_iop_j%3E2656249563%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656249563&rft_id=info:pmid/&rfr_iscdi=true