Research on visualization and diagnosis method of civil aircraft WQAR data
WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2022-04, Vol.2252 (1), p.12042 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12042 |
container_title | Journal of physics. Conference series |
container_volume | 2252 |
creator | Ren, Chenhui Ma, Linlong Yang, Xu Wan, Junlong |
description | WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data. |
doi_str_mv | 10.1088/1742-6596/2252/1/012042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2656249542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656249542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKvPYMA7oW7O2b0sxVMpqFXxMmQ3iU1pNzXZFvTp3WVFEQTnZmaY_58ZPgBOMbrAKM8zLBkZCV6IjBBOMpwhTBAje2DwPdn_rvP8EByltESItiEHYDq3yepYLWCo4c6nrV75D934ttO1gcbr1zokn-DaNotgYHCw8ju_gtrHKmrXwJeH8Rwa3ehjcOD0KtmTrzwEz1eXT5Ob0ezu-nYyno0q0j1Rlk4SSzkSwiBnuBElpUXhmGz_N7ZkrrAyr5DmrKKcaGmRNJJiwSzLUUHpEJz1ezcxvG1tatQybGPdnlREcEFYwRlpVbJXVTGkFK1Tm-jXOr4rjFQHTnVIVIdHdeAUVj241kl7pw-bn9X_u87_cE3vJ4-_hWpjHP0EGPR74Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656249542</pqid></control><display><type>article</type><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</creator><creatorcontrib>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</creatorcontrib><description>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2252/1/012042</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aircraft ; Aircraft engines ; Anomalies ; Fault diagnosis ; Interference ; Physics ; Scientific visualization ; Visualization</subject><ispartof>Journal of physics. Conference series, 2022-04, Vol.2252 (1), p.12042</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2252/1/012042/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Ren, Chenhui</creatorcontrib><creatorcontrib>Ma, Linlong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wan, Junlong</creatorcontrib><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</description><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Anomalies</subject><subject>Fault diagnosis</subject><subject>Interference</subject><subject>Physics</subject><subject>Scientific visualization</subject><subject>Visualization</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKAzEQhoMoWKvPYMA7oW7O2b0sxVMpqFXxMmQ3iU1pNzXZFvTp3WVFEQTnZmaY_58ZPgBOMbrAKM8zLBkZCV6IjBBOMpwhTBAje2DwPdn_rvP8EByltESItiEHYDq3yepYLWCo4c6nrV75D934ttO1gcbr1zokn-DaNotgYHCw8ju_gtrHKmrXwJeH8Rwa3ehjcOD0KtmTrzwEz1eXT5Ob0ezu-nYyno0q0j1Rlk4SSzkSwiBnuBElpUXhmGz_N7ZkrrAyr5DmrKKcaGmRNJJiwSzLUUHpEJz1ezcxvG1tatQybGPdnlREcEFYwRlpVbJXVTGkFK1Tm-jXOr4rjFQHTnVIVIdHdeAUVj241kl7pw-bn9X_u87_cE3vJ4-_hWpjHP0EGPR74Q</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ren, Chenhui</creator><creator>Ma, Linlong</creator><creator>Yang, Xu</creator><creator>Wan, Junlong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220401</creationdate><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><author>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Anomalies</topic><topic>Fault diagnosis</topic><topic>Interference</topic><topic>Physics</topic><topic>Scientific visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Chenhui</creatorcontrib><creatorcontrib>Ma, Linlong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wan, Junlong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Chenhui</au><au>Ma, Linlong</au><au>Yang, Xu</au><au>Wan, Junlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on visualization and diagnosis method of civil aircraft WQAR data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>2252</volume><issue>1</issue><spage>12042</spage><pages>12042-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2252/1/012042</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2022-04, Vol.2252 (1), p.12042 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2656249542 |
source | IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Aircraft Aircraft engines Anomalies Fault diagnosis Interference Physics Scientific visualization Visualization |
title | Research on visualization and diagnosis method of civil aircraft WQAR data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20visualization%20and%20diagnosis%20method%20of%20civil%20aircraft%20WQAR%20data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ren,%20Chenhui&rft.date=2022-04-01&rft.volume=2252&rft.issue=1&rft.spage=12042&rft.pages=12042-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2252/1/012042&rft_dat=%3Cproquest_iop_j%3E2656249542%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656249542&rft_id=info:pmid/&rfr_iscdi=true |