Research on visualization and diagnosis method of civil aircraft WQAR data

WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2022-04, Vol.2252 (1), p.12042
Hauptverfasser: Ren, Chenhui, Ma, Linlong, Yang, Xu, Wan, Junlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12042
container_title Journal of physics. Conference series
container_volume 2252
creator Ren, Chenhui
Ma, Linlong
Yang, Xu
Wan, Junlong
description WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.
doi_str_mv 10.1088/1742-6596/2252/1/012042
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2656249542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656249542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKvPYMA7oW7O2b0sxVMpqFXxMmQ3iU1pNzXZFvTp3WVFEQTnZmaY_58ZPgBOMbrAKM8zLBkZCV6IjBBOMpwhTBAje2DwPdn_rvP8EByltESItiEHYDq3yepYLWCo4c6nrV75D934ttO1gcbr1zokn-DaNotgYHCw8ju_gtrHKmrXwJeH8Rwa3ehjcOD0KtmTrzwEz1eXT5Ob0ezu-nYyno0q0j1Rlk4SSzkSwiBnuBElpUXhmGz_N7ZkrrAyr5DmrKKcaGmRNJJiwSzLUUHpEJz1ezcxvG1tatQybGPdnlREcEFYwRlpVbJXVTGkFK1Tm-jXOr4rjFQHTnVIVIdHdeAUVj241kl7pw-bn9X_u87_cE3vJ4-_hWpjHP0EGPR74Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656249542</pqid></control><display><type>article</type><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><source>IOP Publishing Free Content</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</creator><creatorcontrib>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</creatorcontrib><description>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2252/1/012042</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aircraft ; Aircraft engines ; Anomalies ; Fault diagnosis ; Interference ; Physics ; Scientific visualization ; Visualization</subject><ispartof>Journal of physics. Conference series, 2022-04, Vol.2252 (1), p.12042</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2252/1/012042/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Ren, Chenhui</creatorcontrib><creatorcontrib>Ma, Linlong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wan, Junlong</creatorcontrib><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</description><subject>Aircraft</subject><subject>Aircraft engines</subject><subject>Anomalies</subject><subject>Fault diagnosis</subject><subject>Interference</subject><subject>Physics</subject><subject>Scientific visualization</subject><subject>Visualization</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkNtKAzEQhoMoWKvPYMA7oW7O2b0sxVMpqFXxMmQ3iU1pNzXZFvTp3WVFEQTnZmaY_58ZPgBOMbrAKM8zLBkZCV6IjBBOMpwhTBAje2DwPdn_rvP8EByltESItiEHYDq3yepYLWCo4c6nrV75D934ttO1gcbr1zokn-DaNotgYHCw8ju_gtrHKmrXwJeH8Rwa3ehjcOD0KtmTrzwEz1eXT5Ob0ezu-nYyno0q0j1Rlk4SSzkSwiBnuBElpUXhmGz_N7ZkrrAyr5DmrKKcaGmRNJJiwSzLUUHpEJz1ezcxvG1tatQybGPdnlREcEFYwRlpVbJXVTGkFK1Tm-jXOr4rjFQHTnVIVIdHdeAUVj241kl7pw-bn9X_u87_cE3vJ4-_hWpjHP0EGPR74Q</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Ren, Chenhui</creator><creator>Ma, Linlong</creator><creator>Yang, Xu</creator><creator>Wan, Junlong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220401</creationdate><title>Research on visualization and diagnosis method of civil aircraft WQAR data</title><author>Ren, Chenhui ; Ma, Linlong ; Yang, Xu ; Wan, Junlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2742-bbf72e35066d0fd5d6b3399f47225deb4f9e78c0a54c352a7e07d73164e480933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Aircraft engines</topic><topic>Anomalies</topic><topic>Fault diagnosis</topic><topic>Interference</topic><topic>Physics</topic><topic>Scientific visualization</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Chenhui</creatorcontrib><creatorcontrib>Ma, Linlong</creatorcontrib><creatorcontrib>Yang, Xu</creatorcontrib><creatorcontrib>Wan, Junlong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Chenhui</au><au>Ma, Linlong</au><au>Yang, Xu</au><au>Wan, Junlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on visualization and diagnosis method of civil aircraft WQAR data</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>2252</volume><issue>1</issue><spage>12042</spage><pages>12042-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>WQAR data has the characteristics of large scale, high dimension and many random interference factors, which makes it extremely difficult to use WQAR operational data for flight quality monitoring, expert unknown anomaly detection and PHM. This paper proposes a civil aircraft WQAR data visualization display scheme and the overall framework of fault diagnosis adopts a two-stage cycle to research and recycle and improve the data preprocessing requirements, visualization and diagnostic process methods, etc., and use the civil aircraft operation data to verify the proposed theoretical model and diagnose the failure status. Results shown that the theoretical framework and method can accurately predict the health status of aircraft engines, and can effectively solve the problems of high dimension and many interference factors of WQAR data.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2252/1/012042</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2022-04, Vol.2252 (1), p.12042
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2656249542
source IOP Publishing Free Content; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aircraft
Aircraft engines
Anomalies
Fault diagnosis
Interference
Physics
Scientific visualization
Visualization
title Research on visualization and diagnosis method of civil aircraft WQAR data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20visualization%20and%20diagnosis%20method%20of%20civil%20aircraft%20WQAR%20data&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Ren,%20Chenhui&rft.date=2022-04-01&rft.volume=2252&rft.issue=1&rft.spage=12042&rft.pages=12042-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2252/1/012042&rft_dat=%3Cproquest_iop_j%3E2656249542%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656249542&rft_id=info:pmid/&rfr_iscdi=true