Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands
The electronic structure of the rare-earth mononitrides Ln N (where Ln = rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time, Ln N are c...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2022-04, Vol.24 (4), p.43039 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 43039 |
container_title | New journal of physics |
container_volume | 24 |
creator | Galler, Anna Pourovskii, Leonid V |
description | The electronic structure of the rare-earth mononitrides
Ln
N (where
Ln
= rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time,
Ln
N are challenging for theory, since wide semiconducting 2
p
and 5
d
bands need to be described simultaneously with strongly correlated 4
f
states. Here, we calculate the many-body spectral functions and optical gaps of a series of
Ln
N (with
Ln
= Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) by a density-functional + dynamical mean-field theory (DFT + DMFT) approach treating the correlated
Ln
4
f
shells within the quasi-atomic Hubbard-I approximation. The on-site Coulomb interaction in the 4
f
shell is evaluated by a constrained DFT + Hubbard-I approach. Furthermore, to improve the treatment of semiconducting bands in DFT + DMFT, we employ the modified Becke–Johnson semilocal exchange potential. Focusing on the paramagnetic high-temperature phase, we find that all investigated
Ln
N are
pd
semiconductors with gap values ranging from 1.02 to 2.14 eV along the series. The
pd
band gap is direct for light
Ln
= La…Sm and becomes indirect for heavy rare-earths. Despite a pronounced evolution of the
Ln
4
f
states along the series, empty 4
f
states are invariably found above the bottom of the 5
d
conduction band. The calculated spectra agree well with those available from x-ray photoemission, x-ray emission and x-ray absorption measurements. |
doi_str_mv | 10.1088/1367-2630/ac6317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2656249443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c256c752e3194fdc8f75685da9eb79fe</doaj_id><sourcerecordid>2656249443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-7f3de0a29ad8e99cb54edf08f95a22d673666ed530c6af7abc80b6514a90fc783</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhgexYG3duxxwIYJj8_3hrpTWFi64qetwJh9tLvdOpklG9N-b2ylVQVcJb57zkMPbdW8x-oSRUmeYCjkQQdEZWEGxfNEdP0cv_7i_6l6XskUIY0XIcQeXO29rTlO0fal5sXXJvk-hz5D94CHX-36fpvZec3S-fO4fFigRatq3Cf_Dxgo1pqn0MLm--JamyTVNnO76sWXltDsKsCv-zdN50n27ury9uB42X7_cXJxvBssUqYMM1HkERINTXms7cuZdQCpoDoQ4IakQwjtOkRUQJIxWoVFwzECjYKWiJ93N6nUJtmbOcQ_5p0kQzWOQ8p1p20S788YSLqzkxFOsWXBWBcmF4g60H6UOvrk-rK572P2luj7fmEOGGONEEfUdN_bdys45PSy-VLNNS57aqoYILgjTjNFGoZWyOZWSfXjWYmQOBZpDQ-bQkFkLbCPv15GY5t_OaTsbwgxrX6CIajO70MiP_yD_K_4FE3Gp6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656249443</pqid></control><display><type>article</type><title>Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands</title><source>Full-Text Journals in Chemistry (Open access)</source><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics IOPscience extra</source><source>IOP Publishing (Open access)</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Galler, Anna ; Pourovskii, Leonid V</creator><creatorcontrib>Galler, Anna ; Pourovskii, Leonid V</creatorcontrib><description>The electronic structure of the rare-earth mononitrides
Ln
N (where
Ln
= rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time,
Ln
N are challenging for theory, since wide semiconducting 2
p
and 5
d
bands need to be described simultaneously with strongly correlated 4
f
states. Here, we calculate the many-body spectral functions and optical gaps of a series of
Ln
N (with
Ln
= Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) by a density-functional + dynamical mean-field theory (DFT + DMFT) approach treating the correlated
Ln
4
f
shells within the quasi-atomic Hubbard-I approximation. The on-site Coulomb interaction in the 4
f
shell is evaluated by a constrained DFT + Hubbard-I approach. Furthermore, to improve the treatment of semiconducting bands in DFT + DMFT, we employ the modified Becke–Johnson semilocal exchange potential. Focusing on the paramagnetic high-temperature phase, we find that all investigated
Ln
N are
pd
semiconductors with gap values ranging from 1.02 to 2.14 eV along the series. The
pd
band gap is direct for light
Ln
= La…Sm and becomes indirect for heavy rare-earths. Despite a pronounced evolution of the
Ln
4
f
states along the series, empty 4
f
states are invariably found above the bottom of the 5
d
conduction band. The calculated spectra agree well with those available from x-ray photoemission, x-ray emission and x-ray absorption measurements.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac6317</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Band theory ; Banded structure ; Condensed Matter ; Conduction bands ; electronic correlations ; Electronic structure ; Electrons ; first-principles methods ; Gadolinium ; High temperature ; Materials Science ; Mathematical analysis ; Mean field theory ; Optical properties ; Photoelectric emission ; Physics ; Rare earth elements ; rare-earth semiconductors ; Spintronics ; Strongly Correlated Electrons ; X ray absorption</subject><ispartof>New journal of physics, 2022-04, Vol.24 (4), p.43039</ispartof><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2022 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-7f3de0a29ad8e99cb54edf08f95a22d673666ed530c6af7abc80b6514a90fc783</citedby><cites>FETCH-LOGICAL-c482t-7f3de0a29ad8e99cb54edf08f95a22d673666ed530c6af7abc80b6514a90fc783</cites><orcidid>0000-0003-4003-3539 ; 0000-0002-8596-7784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac6317/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,780,784,864,885,2102,27924,27925,38868,38890,53840,53867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04452828$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galler, Anna</creatorcontrib><creatorcontrib>Pourovskii, Leonid V</creatorcontrib><title>Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The electronic structure of the rare-earth mononitrides
Ln
N (where
Ln
= rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time,
Ln
N are challenging for theory, since wide semiconducting 2
p
and 5
d
bands need to be described simultaneously with strongly correlated 4
f
states. Here, we calculate the many-body spectral functions and optical gaps of a series of
Ln
N (with
Ln
= Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) by a density-functional + dynamical mean-field theory (DFT + DMFT) approach treating the correlated
Ln
4
f
shells within the quasi-atomic Hubbard-I approximation. The on-site Coulomb interaction in the 4
f
shell is evaluated by a constrained DFT + Hubbard-I approach. Furthermore, to improve the treatment of semiconducting bands in DFT + DMFT, we employ the modified Becke–Johnson semilocal exchange potential. Focusing on the paramagnetic high-temperature phase, we find that all investigated
Ln
N are
pd
semiconductors with gap values ranging from 1.02 to 2.14 eV along the series. The
pd
band gap is direct for light
Ln
= La…Sm and becomes indirect for heavy rare-earths. Despite a pronounced evolution of the
Ln
4
f
states along the series, empty 4
f
states are invariably found above the bottom of the 5
d
conduction band. The calculated spectra agree well with those available from x-ray photoemission, x-ray emission and x-ray absorption measurements.</description><subject>Band theory</subject><subject>Banded structure</subject><subject>Condensed Matter</subject><subject>Conduction bands</subject><subject>electronic correlations</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>first-principles methods</subject><subject>Gadolinium</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mean field theory</subject><subject>Optical properties</subject><subject>Photoelectric emission</subject><subject>Physics</subject><subject>Rare earth elements</subject><subject>rare-earth semiconductors</subject><subject>Spintronics</subject><subject>Strongly Correlated Electrons</subject><subject>X ray absorption</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1rFTEUhgexYG3duxxwIYJj8_3hrpTWFi64qetwJh9tLvdOpklG9N-b2ylVQVcJb57zkMPbdW8x-oSRUmeYCjkQQdEZWEGxfNEdP0cv_7i_6l6XskUIY0XIcQeXO29rTlO0fal5sXXJvk-hz5D94CHX-36fpvZec3S-fO4fFigRatq3Cf_Dxgo1pqn0MLm--JamyTVNnO76sWXltDsKsCv-zdN50n27ury9uB42X7_cXJxvBssUqYMM1HkERINTXms7cuZdQCpoDoQ4IakQwjtOkRUQJIxWoVFwzECjYKWiJ93N6nUJtmbOcQ_5p0kQzWOQ8p1p20S788YSLqzkxFOsWXBWBcmF4g60H6UOvrk-rK572P2luj7fmEOGGONEEfUdN_bdys45PSy-VLNNS57aqoYILgjTjNFGoZWyOZWSfXjWYmQOBZpDQ-bQkFkLbCPv15GY5t_OaTsbwgxrX6CIajO70MiP_yD_K_4FE3Gp6A</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Galler, Anna</creator><creator>Pourovskii, Leonid V</creator><general>IOP Publishing</general><general>Institute of Physics: Open Access Journals</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4003-3539</orcidid><orcidid>https://orcid.org/0000-0002-8596-7784</orcidid></search><sort><creationdate>20220401</creationdate><title>Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands</title><author>Galler, Anna ; Pourovskii, Leonid V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-7f3de0a29ad8e99cb54edf08f95a22d673666ed530c6af7abc80b6514a90fc783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Band theory</topic><topic>Banded structure</topic><topic>Condensed Matter</topic><topic>Conduction bands</topic><topic>electronic correlations</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>first-principles methods</topic><topic>Gadolinium</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mean field theory</topic><topic>Optical properties</topic><topic>Photoelectric emission</topic><topic>Physics</topic><topic>Rare earth elements</topic><topic>rare-earth semiconductors</topic><topic>Spintronics</topic><topic>Strongly Correlated Electrons</topic><topic>X ray absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galler, Anna</creatorcontrib><creatorcontrib>Pourovskii, Leonid V</creatorcontrib><collection>IOP Publishing (Open access)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galler, Anna</au><au>Pourovskii, Leonid V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>24</volume><issue>4</issue><spage>43039</spage><pages>43039-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The electronic structure of the rare-earth mononitrides
Ln
N (where
Ln
= rare-earth), which are promising materials for future spintronics applications, is difficult to resolve experimentally due to a strong influence of defects on their transport and optical properties. At the same time,
Ln
N are challenging for theory, since wide semiconducting 2
p
and 5
d
bands need to be described simultaneously with strongly correlated 4
f
states. Here, we calculate the many-body spectral functions and optical gaps of a series of
Ln
N (with
Ln
= Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) by a density-functional + dynamical mean-field theory (DFT + DMFT) approach treating the correlated
Ln
4
f
shells within the quasi-atomic Hubbard-I approximation. The on-site Coulomb interaction in the 4
f
shell is evaluated by a constrained DFT + Hubbard-I approach. Furthermore, to improve the treatment of semiconducting bands in DFT + DMFT, we employ the modified Becke–Johnson semilocal exchange potential. Focusing on the paramagnetic high-temperature phase, we find that all investigated
Ln
N are
pd
semiconductors with gap values ranging from 1.02 to 2.14 eV along the series. The
pd
band gap is direct for light
Ln
= La…Sm and becomes indirect for heavy rare-earths. Despite a pronounced evolution of the
Ln
4
f
states along the series, empty 4
f
states are invariably found above the bottom of the 5
d
conduction band. The calculated spectra agree well with those available from x-ray photoemission, x-ray emission and x-ray absorption measurements.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac6317</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4003-3539</orcidid><orcidid>https://orcid.org/0000-0002-8596-7784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2022-04, Vol.24 (4), p.43039 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2656249443 |
source | Full-Text Journals in Chemistry (Open access); DOAJ Directory of Open Access Journals; Institute of Physics IOPscience extra; IOP Publishing (Open access); Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Band theory Banded structure Condensed Matter Conduction bands electronic correlations Electronic structure Electrons first-principles methods Gadolinium High temperature Materials Science Mathematical analysis Mean field theory Optical properties Photoelectric emission Physics Rare earth elements rare-earth semiconductors Spintronics Strongly Correlated Electrons X ray absorption |
title | Electronic structure of rare-earth mononitrides: quasiatomic excitations and semiconducting bands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20structure%20of%20rare-earth%20mononitrides:%20quasiatomic%20excitations%20and%20semiconducting%20bands&rft.jtitle=New%20journal%20of%20physics&rft.au=Galler,%20Anna&rft.date=2022-04-01&rft.volume=24&rft.issue=4&rft.spage=43039&rft.pages=43039-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac6317&rft_dat=%3Cproquest_cross%3E2656249443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656249443&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c256c752e3194fdc8f75685da9eb79fe&rfr_iscdi=true |