Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation

Recently, developing more accurate and more efficient deep learning algorithms for medical images segmentation attracts more and more attentions of researchers. Most of methods increase the depth of the network to replace with acquiring multi-information. The costs of training images annotation are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2022-04, Vol.81 (10), p.13275-13288
Hauptverfasser: Chan, Sixian, Huang, Cheng, Bai, Cong, Ding, Weilong, Chen, Shengyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13288
container_issue 10
container_start_page 13275
container_title Multimedia tools and applications
container_volume 81
creator Chan, Sixian
Huang, Cheng
Bai, Cong
Ding, Weilong
Chen, Shengyong
description Recently, developing more accurate and more efficient deep learning algorithms for medical images segmentation attracts more and more attentions of researchers. Most of methods increase the depth of the network to replace with acquiring multi-information. The costs of training images annotation are too expensive to label by hand. In this paper, we propose a multi-scale and better performance deep architecture for medical image segmentation, named Res2-UNeXt. Our architecture is an encoder-decoder network with Res2XBlocks. The Res2XBlocks aim at acquiring multi-scale information better in images. To cooperate with Res2-UNeXt, we put forward a simple and efficient method of data augmentation. The data augmentation method, based on the process of cell movement and deformation, has biological implications in away. We evaluate Res2-UNeXt in comparison with recent variants of U-Net: UNet++, CE-Net and LadderNet and the method that different from U-Net architecture: FCN and DFANet on the dataset of ISBI cell tracking challenge 2019 via four different cell images. The experimental results demonstrate that Res2-UNeXt can achieve better performance than both recent variants of U-Net and non-U-Net architecture methods. Besides, the proposed architecture and the data augmentation method have been proven efficiently by the ablation experiments.
doi_str_mv 10.1007/s11042-021-10536-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655932548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655932548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-523c78d11cda5cef8658b9e15812125ffe5bd6c0c4e7fa99a5a62b7af7aaa4773</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczST7Gx2vYn4BUVFLHgLaXZSW7e7Ndla_PeuruDN08zhfd4ZHsaOQZ6ClOYsAchMCalAgESdC9xhI0CjhTEKdvtdF1IYlLDPDlJaSgk5qmzEHp8oKTG9p5funDvetB9U84pozWtysVk0cx6iW9G2jW88tJEH2or02nbcU13zxcrNiSear6jpXLdom0O2F1yd6Oh3jtn0-ur58lZMHm7uLi8mwmsoO4FKe1NUAL5y6CkUORazkgALUKAwBMJZlXvpMzLBlaVDl6uZccE45zJj9JidDL3r2L5vKHV22W5i05-0KkcstcKs6FNqSPnYphQp2HXsf46fFqT9NmcHc7Y3Z3_MWewhPUCpDzdzin_V_1BfdB9wyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655932548</pqid></control><display><type>article</type><title>Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chan, Sixian ; Huang, Cheng ; Bai, Cong ; Ding, Weilong ; Chen, Shengyong</creator><creatorcontrib>Chan, Sixian ; Huang, Cheng ; Bai, Cong ; Ding, Weilong ; Chen, Shengyong</creatorcontrib><description>Recently, developing more accurate and more efficient deep learning algorithms for medical images segmentation attracts more and more attentions of researchers. Most of methods increase the depth of the network to replace with acquiring multi-information. The costs of training images annotation are too expensive to label by hand. In this paper, we propose a multi-scale and better performance deep architecture for medical image segmentation, named Res2-UNeXt. Our architecture is an encoder-decoder network with Res2XBlocks. The Res2XBlocks aim at acquiring multi-scale information better in images. To cooperate with Res2-UNeXt, we put forward a simple and efficient method of data augmentation. The data augmentation method, based on the process of cell movement and deformation, has biological implications in away. We evaluate Res2-UNeXt in comparison with recent variants of U-Net: UNet++, CE-Net and LadderNet and the method that different from U-Net architecture: FCN and DFANet on the dataset of ISBI cell tracking challenge 2019 via four different cell images. The experimental results demonstrate that Res2-UNeXt can achieve better performance than both recent variants of U-Net and non-U-Net architecture methods. Besides, the proposed architecture and the data augmentation method have been proven efficiently by the ablation experiments.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-10536-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications ; Ablation ; Algorithms ; Annotations ; Coders ; Computer Communication Networks ; Computer Science ; Data augmentation ; Data Structures and Information Theory ; Deep learning ; Encoders-Decoders ; Image segmentation ; Machine learning ; Medical imaging ; Medical research ; Multimedia Information Systems ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2022-04, Vol.81 (10), p.13275-13288</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-523c78d11cda5cef8658b9e15812125ffe5bd6c0c4e7fa99a5a62b7af7aaa4773</citedby><cites>FETCH-LOGICAL-c319t-523c78d11cda5cef8658b9e15812125ffe5bd6c0c4e7fa99a5a62b7af7aaa4773</cites><orcidid>0000-0002-1856-1709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-10536-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-10536-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Chan, Sixian</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Bai, Cong</creatorcontrib><creatorcontrib>Ding, Weilong</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><title>Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Recently, developing more accurate and more efficient deep learning algorithms for medical images segmentation attracts more and more attentions of researchers. Most of methods increase the depth of the network to replace with acquiring multi-information. The costs of training images annotation are too expensive to label by hand. In this paper, we propose a multi-scale and better performance deep architecture for medical image segmentation, named Res2-UNeXt. Our architecture is an encoder-decoder network with Res2XBlocks. The Res2XBlocks aim at acquiring multi-scale information better in images. To cooperate with Res2-UNeXt, we put forward a simple and efficient method of data augmentation. The data augmentation method, based on the process of cell movement and deformation, has biological implications in away. We evaluate Res2-UNeXt in comparison with recent variants of U-Net: UNet++, CE-Net and LadderNet and the method that different from U-Net architecture: FCN and DFANet on the dataset of ISBI cell tracking challenge 2019 via four different cell images. The experimental results demonstrate that Res2-UNeXt can achieve better performance than both recent variants of U-Net and non-U-Net architecture methods. Besides, the proposed architecture and the data augmentation method have been proven efficiently by the ablation experiments.</description><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</subject><subject>Ablation</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Coders</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data augmentation</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Encoders-Decoders</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Multimedia Information Systems</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczST7Gx2vYn4BUVFLHgLaXZSW7e7Ndla_PeuruDN08zhfd4ZHsaOQZ6ClOYsAchMCalAgESdC9xhI0CjhTEKdvtdF1IYlLDPDlJaSgk5qmzEHp8oKTG9p5funDvetB9U84pozWtysVk0cx6iW9G2jW88tJEH2or02nbcU13zxcrNiSear6jpXLdom0O2F1yd6Oh3jtn0-ur58lZMHm7uLi8mwmsoO4FKe1NUAL5y6CkUORazkgALUKAwBMJZlXvpMzLBlaVDl6uZccE45zJj9JidDL3r2L5vKHV22W5i05-0KkcstcKs6FNqSPnYphQp2HXsf46fFqT9NmcHc7Y3Z3_MWewhPUCpDzdzin_V_1BfdB9wyw</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Chan, Sixian</creator><creator>Huang, Cheng</creator><creator>Bai, Cong</creator><creator>Ding, Weilong</creator><creator>Chen, Shengyong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1856-1709</orcidid></search><sort><creationdate>20220401</creationdate><title>Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation</title><author>Chan, Sixian ; Huang, Cheng ; Bai, Cong ; Ding, Weilong ; Chen, Shengyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-523c78d11cda5cef8658b9e15812125ffe5bd6c0c4e7fa99a5a62b7af7aaa4773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</topic><topic>Ablation</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Coders</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data augmentation</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Encoders-Decoders</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Multimedia Information Systems</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan, Sixian</creatorcontrib><creatorcontrib>Huang, Cheng</creatorcontrib><creatorcontrib>Bai, Cong</creatorcontrib><creatorcontrib>Ding, Weilong</creatorcontrib><creatorcontrib>Chen, Shengyong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan, Sixian</au><au>Huang, Cheng</au><au>Bai, Cong</au><au>Ding, Weilong</au><au>Chen, Shengyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>81</volume><issue>10</issue><spage>13275</spage><epage>13288</epage><pages>13275-13288</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Recently, developing more accurate and more efficient deep learning algorithms for medical images segmentation attracts more and more attentions of researchers. Most of methods increase the depth of the network to replace with acquiring multi-information. The costs of training images annotation are too expensive to label by hand. In this paper, we propose a multi-scale and better performance deep architecture for medical image segmentation, named Res2-UNeXt. Our architecture is an encoder-decoder network with Res2XBlocks. The Res2XBlocks aim at acquiring multi-scale information better in images. To cooperate with Res2-UNeXt, we put forward a simple and efficient method of data augmentation. The data augmentation method, based on the process of cell movement and deformation, has biological implications in away. We evaluate Res2-UNeXt in comparison with recent variants of U-Net: UNet++, CE-Net and LadderNet and the method that different from U-Net architecture: FCN and DFANet on the dataset of ISBI cell tracking challenge 2019 via four different cell images. The experimental results demonstrate that Res2-UNeXt can achieve better performance than both recent variants of U-Net and non-U-Net architecture methods. Besides, the proposed architecture and the data augmentation method have been proven efficiently by the ablation experiments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-10536-5</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1856-1709</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2022-04, Vol.81 (10), p.13275-13288
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2655932548
source SpringerLink Journals - AutoHoldings
subjects 1176: Artificial Intelligence and Deep Learning for Biomedical Applications
Ablation
Algorithms
Annotations
Coders
Computer Communication Networks
Computer Science
Data augmentation
Data Structures and Information Theory
Deep learning
Encoders-Decoders
Image segmentation
Machine learning
Medical imaging
Medical research
Multimedia Information Systems
Special Purpose and Application-Based Systems
title Res2-UNeXt: a novel deep learning framework for few-shot cell image segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Res2-UNeXt:%20a%20novel%20deep%20learning%20framework%20for%20few-shot%20cell%20image%20segmentation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chan,%20Sixian&rft.date=2022-04-01&rft.volume=81&rft.issue=10&rft.spage=13275&rft.epage=13288&rft.pages=13275-13288&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-10536-5&rft_dat=%3Cproquest_cross%3E2655932548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655932548&rft_id=info:pmid/&rfr_iscdi=true