An automated CNN architecture search for glaucoma diagnosis based on NEAT
Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of dee...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2022-04, Vol.81 (10), p.13441-13465 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13465 |
---|---|
container_issue | 10 |
container_start_page | 13441 |
container_title | Multimedia tools and applications |
container_volume | 81 |
creator | Lima, Alan C. M. Júnior, Geraldo Braz de Almeida, João D. S. de Paiva, Anselmo C. Veras, Rodrigo M. S. |
description | Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of deep learning with convolutional neural networks (CNNs) has been successfully put into practice for several years. However, building a deep learning network requires an amount of experiments to find the fittest parameters, best choice of layers and an amount of available data. Thus it is not always able to produce satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question, in most cases, with small datasets. Based on this scenario, this paper proposes and analyzes a CNN architecture construction from scratch, based on Neuroevolution of Augmenting Topologies for diagnosing glaucoma from fundus images. The method was evaluated with RIM-ONE and the combination of five glaucoma datasets in which we highlight 0.961 and 0.943 of f1-score, respectively for each dataset. |
doi_str_mv | 10.1007/s11042-021-11239-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2655931105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655931105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ea6bd9e532b640adc029b3b80014567022d4c6bc2d40c92fbd8586e720dfc4513</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscTas7dhOjlVVoFIVLuVs-S8lVZsUOznw9rgEiRun2ZVmZlcfQvcUHimAekqUQsEIMEooZbwi6gLNqFCcKMXoZZ55CUQJoNfoJqU9AJWCFTO0XnTYjEN_NEPweFnX2ET30Q7BDWMMOIXzips-4t3BjC77sG_NrutTm7A1KYf6DterxfYWXTXmkMLdr87R-_Nqu3wlm7eX9XKxIY4pGEgw0voqCM6sLMB4B6yy3Jb5o0JIBYz5wknrsoCrWGN9KUoZFAPfuEJQPkcPU-8p9p9jSIPe92Ps8knNpBAVzyhEdrHJ5WKfUgyNPsX2aOKXpqDPyPSETGdk-geZVjnEp1DK5m4X4l_1P6lvHzttAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655931105</pqid></control><display><type>article</type><title>An automated CNN architecture search for glaucoma diagnosis based on NEAT</title><source>Springer Nature - Complete Springer Journals</source><creator>Lima, Alan C. M. ; Júnior, Geraldo Braz ; de Almeida, João D. S. ; de Paiva, Anselmo C. ; Veras, Rodrigo M. S.</creator><creatorcontrib>Lima, Alan C. M. ; Júnior, Geraldo Braz ; de Almeida, João D. S. ; de Paiva, Anselmo C. ; Veras, Rodrigo M. S.</creatorcontrib><description>Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of deep learning with convolutional neural networks (CNNs) has been successfully put into practice for several years. However, building a deep learning network requires an amount of experiments to find the fittest parameters, best choice of layers and an amount of available data. Thus it is not always able to produce satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question, in most cases, with small datasets. Based on this scenario, this paper proposes and analyzes a CNN architecture construction from scratch, based on Neuroevolution of Augmenting Topologies for diagnosing glaucoma from fundus images. The method was evaluated with RIM-ONE and the combination of five glaucoma datasets in which we highlight 0.961 and 0.943 of f1-score, respectively for each dataset.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-021-11239-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications ; Artificial neural networks ; Blindness ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Eye diseases ; Glaucoma ; Intraocular pressure ; Multimedia Information Systems ; Parameters ; Special Purpose and Application-Based Systems ; Topology ; Visual fields</subject><ispartof>Multimedia tools and applications, 2022-04, Vol.81 (10), p.13441-13465</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ea6bd9e532b640adc029b3b80014567022d4c6bc2d40c92fbd8586e720dfc4513</cites><orcidid>0000-0002-0167-7326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-021-11239-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-021-11239-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Júnior, Geraldo Braz</creatorcontrib><creatorcontrib>de Almeida, João D. S.</creatorcontrib><creatorcontrib>de Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Veras, Rodrigo M. S.</creatorcontrib><title>An automated CNN architecture search for glaucoma diagnosis based on NEAT</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of deep learning with convolutional neural networks (CNNs) has been successfully put into practice for several years. However, building a deep learning network requires an amount of experiments to find the fittest parameters, best choice of layers and an amount of available data. Thus it is not always able to produce satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question, in most cases, with small datasets. Based on this scenario, this paper proposes and analyzes a CNN architecture construction from scratch, based on Neuroevolution of Augmenting Topologies for diagnosing glaucoma from fundus images. The method was evaluated with RIM-ONE and the combination of five glaucoma datasets in which we highlight 0.961 and 0.943 of f1-score, respectively for each dataset.</description><subject>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</subject><subject>Artificial neural networks</subject><subject>Blindness</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Eye diseases</subject><subject>Glaucoma</subject><subject>Intraocular pressure</subject><subject>Multimedia Information Systems</subject><subject>Parameters</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Topology</subject><subject>Visual fields</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwApwscTas7dhOjlVVoFIVLuVs-S8lVZsUOznw9rgEiRun2ZVmZlcfQvcUHimAekqUQsEIMEooZbwi6gLNqFCcKMXoZZ55CUQJoNfoJqU9AJWCFTO0XnTYjEN_NEPweFnX2ET30Q7BDWMMOIXzips-4t3BjC77sG_NrutTm7A1KYf6DterxfYWXTXmkMLdr87R-_Nqu3wlm7eX9XKxIY4pGEgw0voqCM6sLMB4B6yy3Jb5o0JIBYz5wknrsoCrWGN9KUoZFAPfuEJQPkcPU-8p9p9jSIPe92Ps8knNpBAVzyhEdrHJ5WKfUgyNPsX2aOKXpqDPyPSETGdk-geZVjnEp1DK5m4X4l_1P6lvHzttAA</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Lima, Alan C. M.</creator><creator>Júnior, Geraldo Braz</creator><creator>de Almeida, João D. S.</creator><creator>de Paiva, Anselmo C.</creator><creator>Veras, Rodrigo M. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0167-7326</orcidid></search><sort><creationdate>20220401</creationdate><title>An automated CNN architecture search for glaucoma diagnosis based on NEAT</title><author>Lima, Alan C. M. ; Júnior, Geraldo Braz ; de Almeida, João D. S. ; de Paiva, Anselmo C. ; Veras, Rodrigo M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ea6bd9e532b640adc029b3b80014567022d4c6bc2d40c92fbd8586e720dfc4513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>1176: Artificial Intelligence and Deep Learning for Biomedical Applications</topic><topic>Artificial neural networks</topic><topic>Blindness</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Eye diseases</topic><topic>Glaucoma</topic><topic>Intraocular pressure</topic><topic>Multimedia Information Systems</topic><topic>Parameters</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Topology</topic><topic>Visual fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Alan C. M.</creatorcontrib><creatorcontrib>Júnior, Geraldo Braz</creatorcontrib><creatorcontrib>de Almeida, João D. S.</creatorcontrib><creatorcontrib>de Paiva, Anselmo C.</creatorcontrib><creatorcontrib>Veras, Rodrigo M. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Alan C. M.</au><au>Júnior, Geraldo Braz</au><au>de Almeida, João D. S.</au><au>de Paiva, Anselmo C.</au><au>Veras, Rodrigo M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An automated CNN architecture search for glaucoma diagnosis based on NEAT</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>81</volume><issue>10</issue><spage>13441</spage><epage>13465</epage><pages>13441-13465</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Glaucoma is an ocular disease that causes damage to the optic nerve, inducing successive narrowing of the visual field in affected patients due to an increased intraocular pressure, which can lead patients to blindness in an advanced stage without clinical reversal. For several years, the use of deep learning with convolutional neural networks (CNNs) has been successfully put into practice for several years. However, building a deep learning network requires an amount of experiments to find the fittest parameters, best choice of layers and an amount of available data. Thus it is not always able to produce satisfactory results due to the amount of parameters that need to be configured to adapt the CNN architecture to the problem in question, in most cases, with small datasets. Based on this scenario, this paper proposes and analyzes a CNN architecture construction from scratch, based on Neuroevolution of Augmenting Topologies for diagnosing glaucoma from fundus images. The method was evaluated with RIM-ONE and the combination of five glaucoma datasets in which we highlight 0.961 and 0.943 of f1-score, respectively for each dataset.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-021-11239-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0167-7326</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2022-04, Vol.81 (10), p.13441-13465 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2655931105 |
source | Springer Nature - Complete Springer Journals |
subjects | 1176: Artificial Intelligence and Deep Learning for Biomedical Applications Artificial neural networks Blindness Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Eye diseases Glaucoma Intraocular pressure Multimedia Information Systems Parameters Special Purpose and Application-Based Systems Topology Visual fields |
title | An automated CNN architecture search for glaucoma diagnosis based on NEAT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20automated%20CNN%20architecture%20search%20for%20glaucoma%20diagnosis%20based%20on%20NEAT&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Lima,%20Alan%20C.%20M.&rft.date=2022-04-01&rft.volume=81&rft.issue=10&rft.spage=13441&rft.epage=13465&rft.pages=13441-13465&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-021-11239-7&rft_dat=%3Cproquest_cross%3E2655931105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655931105&rft_id=info:pmid/&rfr_iscdi=true |