Information Fusion: Scaling Subspace-Driven Approaches

In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-04
Hauptverfasser: Ghanem, Sally, Krim, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ghanem, Sally
Krim, Hamid
description In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2655914381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655914381</sourcerecordid><originalsourceid>FETCH-proquest_journals_26559143813</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw88xLyy_KTSzJzM9TcCstBlJWCsHJiTmZeekKwaVJxQWJyam6LkWZZal5Co4FBUX5ickZqcU8DKxpiTnFqbxQmptB2c01xNlDF6igsDS1uCQ-K7-0KA8oFW9kZmpqaWhibGFoTJwqAM13NVk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655914381</pqid></control><display><type>article</type><title>Information Fusion: Scaling Subspace-Driven Approaches</title><source>Free E- Journals</source><creator>Ghanem, Sally ; Krim, Hamid</creator><creatorcontrib>Ghanem, Sally ; Krim, Hamid</creatorcontrib><description>In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Clustering ; Coders ; Data integration ; Modal data ; Robustness ; Subspaces</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ghanem, Sally</creatorcontrib><creatorcontrib>Krim, Hamid</creatorcontrib><title>Information Fusion: Scaling Subspace-Driven Approaches</title><title>arXiv.org</title><description>In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise.</description><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Coders</subject><subject>Data integration</subject><subject>Modal data</subject><subject>Robustness</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw88xLyy_KTSzJzM9TcCstBlJWCsHJiTmZeekKwaVJxQWJyam6LkWZZal5Co4FBUX5ickZqcU8DKxpiTnFqbxQmptB2c01xNlDF6igsDS1uCQ-K7-0KA8oFW9kZmpqaWhibGFoTJwqAM13NVk</recordid><startdate>20220426</startdate><enddate>20220426</enddate><creator>Ghanem, Sally</creator><creator>Krim, Hamid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220426</creationdate><title>Information Fusion: Scaling Subspace-Driven Approaches</title><author>Ghanem, Sally ; Krim, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26559143813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Coders</topic><topic>Data integration</topic><topic>Modal data</topic><topic>Robustness</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghanem, Sally</creatorcontrib><creatorcontrib>Krim, Hamid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanem, Sally</au><au>Krim, Hamid</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Information Fusion: Scaling Subspace-Driven Approaches</atitle><jtitle>arXiv.org</jtitle><date>2022-04-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we seek to exploit the deep structure of multi-modal data to robustly exploit the group subspace distribution of the information using the Convolutional Neural Network (CNN) formalism. Upon unfolding the set of subspaces constituting each data modality, and learning their corresponding encoders, an optimized integration of the generated inherent information is carried out to yield a characterization of various classes. Referred to as deep Multimodal Robust Group Subspace Clustering (DRoGSuRe), this approach is compared against the independently developed state-of-the-art approach named Deep Multimodal Subspace Clustering (DMSC). Experiments on different multimodal datasets show that our approach is competitive and more robust in the presence of noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2655914381
source Free E- Journals
subjects Artificial neural networks
Clustering
Coders
Data integration
Modal data
Robustness
Subspaces
title Information Fusion: Scaling Subspace-Driven Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Information%20Fusion:%20Scaling%20Subspace-Driven%20Approaches&rft.jtitle=arXiv.org&rft.au=Ghanem,%20Sally&rft.date=2022-04-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2655914381%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655914381&rft_id=info:pmid/&rfr_iscdi=true