Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items
Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source colle...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Downs, Laura Francis, Anthony Koenig, Nate Kinman, Brandon Hickman, Ryan Reymann, Krista McHugh, Thomas B Vanhoucke, Vincent |
description | Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source collection of over one thousand 3D-scanned household items released under a Creative Commons license; these models are preprocessed for use in Ignition Gazebo and the Bullet simulation platforms, but are easily adaptable to other simulators. We describe our object scanning and curation pipeline, then provide statistics about the contents of the dataset and its usage. We hope that the diversity, quality, and flexibility of Google Scanned Objects will lead to advances in interactive simulation, synthetic perception, and robotic learning. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2655914378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655914378</sourcerecordid><originalsourceid>FETCH-proquest_journals_26559143783</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FmzGUWsXWRkEEbWXSa9_mFPemUVvX4to3eoszjdiDhdi4cUB5xPmErW-7_Mw4lIKhx33WlcdwiVXfY8FnG4t5oZWsIa0qWrvbFXXmBckyihCA7oEkfx0qi1hrbsCDgbvNGPjUnWE7rdTNt9tr5vUewz6aZFM1mo79J-V8VDK5SIQUSz-U29xmzvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655914378</pqid></control><display><type>article</type><title>Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items</title><source>Free E- Journals</source><creator>Downs, Laura ; Francis, Anthony ; Koenig, Nate ; Kinman, Brandon ; Hickman, Ryan ; Reymann, Krista ; McHugh, Thomas B ; Vanhoucke, Vincent</creator><creatorcontrib>Downs, Laura ; Francis, Anthony ; Koenig, Nate ; Kinman, Brandon ; Hickman, Ryan ; Reymann, Krista ; McHugh, Thomas B ; Vanhoucke, Vincent</creatorcontrib><description>Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source collection of over one thousand 3D-scanned household items released under a Creative Commons license; these models are preprocessed for use in Ignition Gazebo and the Bullet simulation platforms, but are easily adaptable to other simulators. We describe our object scanning and curation pipeline, then provide statistics about the contents of the dataset and its usage. We hope that the diversity, quality, and flexibility of Google Scanned Objects will lead to advances in interactive simulation, synthetic perception, and robotic learning.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer vision ; Datasets ; Deep learning ; Robotics ; Simulation ; Simulators ; Three dimensional models</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Downs, Laura</creatorcontrib><creatorcontrib>Francis, Anthony</creatorcontrib><creatorcontrib>Koenig, Nate</creatorcontrib><creatorcontrib>Kinman, Brandon</creatorcontrib><creatorcontrib>Hickman, Ryan</creatorcontrib><creatorcontrib>Reymann, Krista</creatorcontrib><creatorcontrib>McHugh, Thomas B</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><title>Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items</title><title>arXiv.org</title><description>Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source collection of over one thousand 3D-scanned household items released under a Creative Commons license; these models are preprocessed for use in Ignition Gazebo and the Bullet simulation platforms, but are easily adaptable to other simulators. We describe our object scanning and curation pipeline, then provide statistics about the contents of the dataset and its usage. We hope that the diversity, quality, and flexibility of Google Scanned Objects will lead to advances in interactive simulation, synthetic perception, and robotic learning.</description><subject>Computer vision</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Simulators</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FmzGUWsXWRkEEbWXSa9_mFPemUVvX4to3eoszjdiDhdi4cUB5xPmErW-7_Mw4lIKhx33WlcdwiVXfY8FnG4t5oZWsIa0qWrvbFXXmBckyihCA7oEkfx0qi1hrbsCDgbvNGPjUnWE7rdTNt9tr5vUewz6aZFM1mo79J-V8VDK5SIQUSz-U29xmzvk</recordid><startdate>20220425</startdate><enddate>20220425</enddate><creator>Downs, Laura</creator><creator>Francis, Anthony</creator><creator>Koenig, Nate</creator><creator>Kinman, Brandon</creator><creator>Hickman, Ryan</creator><creator>Reymann, Krista</creator><creator>McHugh, Thomas B</creator><creator>Vanhoucke, Vincent</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220425</creationdate><title>Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items</title><author>Downs, Laura ; Francis, Anthony ; Koenig, Nate ; Kinman, Brandon ; Hickman, Ryan ; Reymann, Krista ; McHugh, Thomas B ; Vanhoucke, Vincent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26559143783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer vision</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Simulators</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Downs, Laura</creatorcontrib><creatorcontrib>Francis, Anthony</creatorcontrib><creatorcontrib>Koenig, Nate</creatorcontrib><creatorcontrib>Kinman, Brandon</creatorcontrib><creatorcontrib>Hickman, Ryan</creatorcontrib><creatorcontrib>Reymann, Krista</creatorcontrib><creatorcontrib>McHugh, Thomas B</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downs, Laura</au><au>Francis, Anthony</au><au>Koenig, Nate</au><au>Kinman, Brandon</au><au>Hickman, Ryan</au><au>Reymann, Krista</au><au>McHugh, Thomas B</au><au>Vanhoucke, Vincent</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items</atitle><jtitle>arXiv.org</jtitle><date>2022-04-25</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Interactive 3D simulations have enabled breakthroughs in robotics and computer vision, but simulating the broad diversity of environments needed for deep learning requires large corpora of photo-realistic 3D object models. To address this need, we present Google Scanned Objects, an open-source collection of over one thousand 3D-scanned household items released under a Creative Commons license; these models are preprocessed for use in Ignition Gazebo and the Bullet simulation platforms, but are easily adaptable to other simulators. We describe our object scanning and curation pipeline, then provide statistics about the contents of the dataset and its usage. We hope that the diversity, quality, and flexibility of Google Scanned Objects will lead to advances in interactive simulation, synthetic perception, and robotic learning.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2655914378 |
source | Free E- Journals |
subjects | Computer vision Datasets Deep learning Robotics Simulation Simulators Three dimensional models |
title | Google Scanned Objects: A High-Quality Dataset of 3D Scanned Household Items |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Google%20Scanned%20Objects:%20A%20High-Quality%20Dataset%20of%203D%20Scanned%20Household%20Items&rft.jtitle=arXiv.org&rft.au=Downs,%20Laura&rft.date=2022-04-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2655914378%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655914378&rft_id=info:pmid/&rfr_iscdi=true |