Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy
H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2022-06, Vol.14 (3), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 14 |
creator | Takahashi, Kohei Baba, Toshihiko |
description | H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering. |
doi_str_mv | 10.1109/JPHOT.2022.3168543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2655859988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759999</ieee_id><doaj_id>oai_doaj_org_article_4a9770678f154342afdeea9576276805</doaj_id><sourcerecordid>2655859988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</originalsourceid><addsrcrecordid>eNpNkU9PAjEQxTdGExH9Anpp4hnsn91ueyREBYNCIpyb2W4XS2CL3UJcP70LS4ineZnM-81kXhTdE9wnBMunt9loOu9TTGmfES6SmF1EHSJj1sM8SS7_6evopqpWGHNJEtmJ9HQb7Mb-QrCuRK5AgGZfLrjSajT0dRVgjT6gdBr2NtRoUdlyiYZuD95CqQ16h-DtDxrksA0t43nv1ruj-gweglnWt9FVAevK3J1qN1q8PM-Ho95k-joeDiY9zShmPZ2KPMMFxIxnNMsAEpLFmuHCQMYFM1mc5nke61xQxjU0yhiQBHNhGNEYs240brm5g5XaersBXysHVh0bzi8V-GD12qgYZJpinoqCNL-KKRT5AZaknKZc4KRhPbasrXffO1MFtXI7XzbnK9p8USRSCtFM0XZKe1dV3hTnrQSrQzDqGIw6BKNOwTSmh9ZkjTFng0wbpJTsD6fMix8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655859988</pqid></control><display><type>article</type><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Takahashi, Kohei ; Baba, Toshihiko</creator><creatorcontrib>Takahashi, Kohei ; Baba, Toshihiko</creatorcontrib><description>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3168543</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Artificial neural networks ; Covariance matrix ; Data models ; Evolutionary algorithms ; evolutionary calculation ; Finite difference methods ; machine learning ; nanolaaser ; Neural networks ; Optimization ; Photonic crystal ; Photonic crystals ; Predictive models ; Slabs ; Time-domain analysis</subject><ispartof>IEEE photonics journal, 2022-06, Vol.14 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</citedby><cites>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</cites><orcidid>0000-0002-5231-3178 ; 0000-0002-2034-7381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759999$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27622,27913,27914,54922</link.rule.ids></links><search><creatorcontrib>Takahashi, Kohei</creatorcontrib><creatorcontrib>Baba, Toshihiko</creatorcontrib><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Evolutionary algorithms</subject><subject>evolutionary calculation</subject><subject>Finite difference methods</subject><subject>machine learning</subject><subject>nanolaaser</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Photonic crystal</subject><subject>Photonic crystals</subject><subject>Predictive models</subject><subject>Slabs</subject><subject>Time-domain analysis</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PAjEQxTdGExH9Anpp4hnsn91ueyREBYNCIpyb2W4XS2CL3UJcP70LS4ineZnM-81kXhTdE9wnBMunt9loOu9TTGmfES6SmF1EHSJj1sM8SS7_6evopqpWGHNJEtmJ9HQb7Mb-QrCuRK5AgGZfLrjSajT0dRVgjT6gdBr2NtRoUdlyiYZuD95CqQ16h-DtDxrksA0t43nv1ruj-gweglnWt9FVAevK3J1qN1q8PM-Ho95k-joeDiY9zShmPZ2KPMMFxIxnNMsAEpLFmuHCQMYFM1mc5nke61xQxjU0yhiQBHNhGNEYs240brm5g5XaersBXysHVh0bzi8V-GD12qgYZJpinoqCNL-KKRT5AZaknKZc4KRhPbasrXffO1MFtXI7XzbnK9p8USRSCtFM0XZKe1dV3hTnrQSrQzDqGIw6BKNOwTSmh9ZkjTFng0wbpJTsD6fMix8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Takahashi, Kohei</creator><creator>Baba, Toshihiko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5231-3178</orcidid><orcidid>https://orcid.org/0000-0002-2034-7381</orcidid></search><sort><creationdate>20220601</creationdate><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><author>Takahashi, Kohei ; Baba, Toshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Evolutionary algorithms</topic><topic>evolutionary calculation</topic><topic>Finite difference methods</topic><topic>machine learning</topic><topic>nanolaaser</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Photonic crystal</topic><topic>Photonic crystals</topic><topic>Predictive models</topic><topic>Slabs</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Kohei</creatorcontrib><creatorcontrib>Baba, Toshihiko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Kohei</au><au>Baba, Toshihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3168543</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5231-3178</orcidid><orcidid>https://orcid.org/0000-0002-2034-7381</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2022-06, Vol.14 (3), p.1-5 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_proquest_journals_2655859988 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation Artificial neural networks Covariance matrix Data models Evolutionary algorithms evolutionary calculation Finite difference methods machine learning nanolaaser Neural networks Optimization Photonic crystal Photonic crystals Predictive models Slabs Time-domain analysis |
title | Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Photonic%20Crystal%20Nanocavity%20Using%20Covariance%20Matrix%20Adaptation%20Evolution%20Strategy&rft.jtitle=IEEE%20photonics%20journal&rft.au=Takahashi,%20Kohei&rft.date=2022-06-01&rft.volume=14&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3168543&rft_dat=%3Cproquest_doaj_%3E2655859988%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655859988&rft_id=info:pmid/&rft_ieee_id=9759999&rft_doaj_id=oai_doaj_org_article_4a9770678f154342afdeea9576276805&rfr_iscdi=true |