Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy

H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2022-06, Vol.14 (3), p.1-5
Hauptverfasser: Takahashi, Kohei, Baba, Toshihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 3
container_start_page 1
container_title IEEE photonics journal
container_volume 14
creator Takahashi, Kohei
Baba, Toshihiko
description H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.
doi_str_mv 10.1109/JPHOT.2022.3168543
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2655859988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9759999</ieee_id><doaj_id>oai_doaj_org_article_4a9770678f154342afdeea9576276805</doaj_id><sourcerecordid>2655859988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</originalsourceid><addsrcrecordid>eNpNkU9PAjEQxTdGExH9Anpp4hnsn91ueyREBYNCIpyb2W4XS2CL3UJcP70LS4ineZnM-81kXhTdE9wnBMunt9loOu9TTGmfES6SmF1EHSJj1sM8SS7_6evopqpWGHNJEtmJ9HQb7Mb-QrCuRK5AgGZfLrjSajT0dRVgjT6gdBr2NtRoUdlyiYZuD95CqQ16h-DtDxrksA0t43nv1ruj-gweglnWt9FVAevK3J1qN1q8PM-Ho95k-joeDiY9zShmPZ2KPMMFxIxnNMsAEpLFmuHCQMYFM1mc5nke61xQxjU0yhiQBHNhGNEYs240brm5g5XaersBXysHVh0bzi8V-GD12qgYZJpinoqCNL-KKRT5AZaknKZc4KRhPbasrXffO1MFtXI7XzbnK9p8USRSCtFM0XZKe1dV3hTnrQSrQzDqGIw6BKNOwTSmh9ZkjTFng0wbpJTsD6fMix8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655859988</pqid></control><display><type>article</type><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Takahashi, Kohei ; Baba, Toshihiko</creator><creatorcontrib>Takahashi, Kohei ; Baba, Toshihiko</creatorcontrib><description>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2022.3168543</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Artificial neural networks ; Covariance matrix ; Data models ; Evolutionary algorithms ; evolutionary calculation ; Finite difference methods ; machine learning ; nanolaaser ; Neural networks ; Optimization ; Photonic crystal ; Photonic crystals ; Predictive models ; Slabs ; Time-domain analysis</subject><ispartof>IEEE photonics journal, 2022-06, Vol.14 (3), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</citedby><cites>FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</cites><orcidid>0000-0002-5231-3178 ; 0000-0002-2034-7381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9759999$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,27622,27913,27914,54922</link.rule.ids></links><search><creatorcontrib>Takahashi, Kohei</creatorcontrib><creatorcontrib>Baba, Toshihiko</creatorcontrib><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>Covariance matrix</subject><subject>Data models</subject><subject>Evolutionary algorithms</subject><subject>evolutionary calculation</subject><subject>Finite difference methods</subject><subject>machine learning</subject><subject>nanolaaser</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Photonic crystal</subject><subject>Photonic crystals</subject><subject>Predictive models</subject><subject>Slabs</subject><subject>Time-domain analysis</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9PAjEQxTdGExH9Anpp4hnsn91ueyREBYNCIpyb2W4XS2CL3UJcP70LS4ineZnM-81kXhTdE9wnBMunt9loOu9TTGmfES6SmF1EHSJj1sM8SS7_6evopqpWGHNJEtmJ9HQb7Mb-QrCuRK5AgGZfLrjSajT0dRVgjT6gdBr2NtRoUdlyiYZuD95CqQ16h-DtDxrksA0t43nv1ruj-gweglnWt9FVAevK3J1qN1q8PM-Ho95k-joeDiY9zShmPZ2KPMMFxIxnNMsAEpLFmuHCQMYFM1mc5nke61xQxjU0yhiQBHNhGNEYs240brm5g5XaersBXysHVh0bzi8V-GD12qgYZJpinoqCNL-KKRT5AZaknKZc4KRhPbasrXffO1MFtXI7XzbnK9p8USRSCtFM0XZKe1dV3hTnrQSrQzDqGIw6BKNOwTSmh9ZkjTFng0wbpJTsD6fMix8</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Takahashi, Kohei</creator><creator>Baba, Toshihiko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5231-3178</orcidid><orcidid>https://orcid.org/0000-0002-2034-7381</orcidid></search><sort><creationdate>20220601</creationdate><title>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</title><author>Takahashi, Kohei ; Baba, Toshihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3203-c78db0fa436b2bbaa51b4c30feab683eb47ddd4cd8236cad4ceea91068e31c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>Covariance matrix</topic><topic>Data models</topic><topic>Evolutionary algorithms</topic><topic>evolutionary calculation</topic><topic>Finite difference methods</topic><topic>machine learning</topic><topic>nanolaaser</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Photonic crystal</topic><topic>Photonic crystals</topic><topic>Predictive models</topic><topic>Slabs</topic><topic>Time-domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takahashi, Kohei</creatorcontrib><creatorcontrib>Baba, Toshihiko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takahashi, Kohei</au><au>Baba, Toshihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>H0-type photonic crystal nanocavities hold high quality factors Q and quite small cavity mode volumes. This study finds their ultrahigh Q structures, which allow stable operation as a nanolaser even with fabrication-induced disordering. Previously, we generated a neural network model for predicting Q s, searched for a high- Q structure and its slotted version, and found those showing Q = 1,140,000 and 91,600, respectively. These values were an order of magnitude higher than those obtained by manual optimizations. However, further improvement above these values was saturated because of the insufficient accuracy of the neural network model at the high Q regime. Instead of applying the model, we repeated directly calculating Q s, implementing a covariance matrix adaptation evolution strategy algorithm to search structures in this study. Consequently, Q values were increased up to 14,500,000 and 741,000 while consuming shorter calculation time. We also confirmed that these structures significantly improve robustness against structural disordering.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2022.3168543</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5231-3178</orcidid><orcidid>https://orcid.org/0000-0002-2034-7381</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2022-06, Vol.14 (3), p.1-5
issn 1943-0655
1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2655859988
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation
Artificial neural networks
Covariance matrix
Data models
Evolutionary algorithms
evolutionary calculation
Finite difference methods
machine learning
nanolaaser
Neural networks
Optimization
Photonic crystal
Photonic crystals
Predictive models
Slabs
Time-domain analysis
title Optimization of a Photonic Crystal Nanocavity Using Covariance Matrix Adaptation Evolution Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20a%20Photonic%20Crystal%20Nanocavity%20Using%20Covariance%20Matrix%20Adaptation%20Evolution%20Strategy&rft.jtitle=IEEE%20photonics%20journal&rft.au=Takahashi,%20Kohei&rft.date=2022-06-01&rft.volume=14&rft.issue=3&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2022.3168543&rft_dat=%3Cproquest_doaj_%3E2655859988%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655859988&rft_id=info:pmid/&rft_ieee_id=9759999&rft_doaj_id=oai_doaj_org_article_4a9770678f154342afdeea9576276805&rfr_iscdi=true